Google scholar: Citations = 150, h-index = 7, i10-index = 6

Journal Articles

  1. WaterLily.jl: A differentiable and backend-agnostic Julia solver to simulate incompressible viscous flow and dynamic bodies
    Weymouth, G. D., & Font, B. (2024, submitted).
  2. Deep reinforcement learning for active flow control in a turbulent separation bubble
    Font, B., Alcántara-Ávila, F., Rabault, J., Vinuesa, R., & Lehmkuhl, O. (2024, submitted).
  3. Active flow control for drag reduction through multi-agent reinforcement learning on a turbulent cylinder at Re_D=3900
    Suárez, P., Álcantara-Ávila, F., Rabault, J., Miró, A., Font, B., Lehmkuhl, O., & Vinuesa, R. (2024, submitted).
  4. Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learning
    Suárez, P., Álcantara-Ávila, F., Rabault, J., Miró, A., Font, B., Lehmkuhl, O., & Vinuesa, R. (2024, submitted).
  5. Hydrothermal liquefaction of Spanish crude olive pomace for biofuel and biochar production
    Cutz, L., Misara, S., Font, B., Al-Naji, M., & de Jong, W. (2024, submitted).
  6. A data-driven non-equilibrium wall model for LES of transitional flows
    Radhakrishnan, S., Calafell, J., Miró, A., Font, B., & Lehmkuhl, O. (2024). International Journal of Numerical Methods for Heat & Fluid Flow.
  7. Deep reinforcement learning for flow control exploits different physics for increasing Reynolds number regimes
    Varela, P., Suárez, P., Alcántara-Ávila, F., Miró, A., Rabault, J., Font, B., García-Cuevas, L. M., Lehmkuhl, O., & Vinuesa, R. (2022). Actuators, 11(12).
  8. Deep learning of the spanwise-averaged Navier–Stokes equations
    Font, B., Weymouth, G. D., Nguyen, V.-T., & Tutty, O. R. (2021). Journal of Computational Physics, 434, 110199.
  9. Span effect on the turbulence nature of flow past a circular cylinder
    Font, B., Weymouth, G. D., Nguyen, V.-T., & Tutty, O. R. (2019). Journal of Fluid Mechanics, 878, 306–323.

Peer-reviewed Symposium Proceedings

  1. Active flow control of a turbulent separation bubble through deep reinforcement learning
    Font, B., Alcántara-Ávila, F., Rabault, J., Vinuesa, R., & Lehmkuhl, O. (2024). Journal of Physics: Conference Series, 2753(1), 012022.
  2. φ–flow: A novel physics-constrained architecture to enforce incompressibility and boundary conditions for fast and accurate flow predictions
    Cabral, M., Font, B., & Weymouth, G. D. (2024). 16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics.
  3. Towards active flow control strategies through deep reinforcement learning
    Montalà, R., Font, B., Lehmkuhl, O., Vinuesa, R., & Rodriguez, I. (2024). 16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics.
  4. A data-driven wall-shear stress model for LES using gradient boosted decision trees
    Radhakrishnan, S., Gyamfi, L. A., Miró, A., Font, B., Calafell, J., & Lehmkuhl, O. (2021). ISC High Performance Computing Conference, 105–121.
  5. Turbulent wake prediction using deep convolutional neural networks
    Font, B., Weymouth, G. D., Nguyen, V.-T., & Tutty, O. R. (2020). 33rd Symposium on Naval Hydrodynamics.

Conference Proceedings

  1. WaterLily.jl: A differentiable fluid simulator in Julia with fast heterogeneous execution
    Weymouth, G. D., & Font, B. (2023). In ParCFD 2023, Cuenca (Ecuador).
  2. Active flow control for three-dimensional cylinders through deep reinforcement learning
    Suárez, P., Alcántara-Ávila, F., Miró, A., Rabault, J., Font, B., Lehmkuhl, O., & Vinuesa, R. (2023). In 14th International ERCOFTAC Symposium on Engineering, Turbulence, Modelling and Measurements.
  3. Analysis of two-dimensional and three-dimensional wakes of long circular cylinders
    Font, B., Weymouth, G. D., & Tutty, O. R. (2017). In OCEANS 2017. IEEE.

Theses

  1. Modelling of Flow Past Long Cylindrical Structures [PhD thesis]
    Font, B. (2020). University of Southampton.
  2. High-Order Shock-Capturing Schemes for Micro Shock Tubes [Master’s thesis]
    Font, B. (2015). Cranfield University.

Invited Talks

  1. Interdisciplinary Scientific Computing Laboratory, Pennsylvania State University, US, (2024). https://juliacon.org/2024/minisymposia/hpc/
  2. Fluids AI Special Interest Group series, TU Delft, Netherlands, (2024).
  3. Julia for HPC minisymposia, JuliaCon2024, Netherlands, (2024). https://juliacon.org/2024/minisymposia/hpc/
  4. Julia for HPC course, High Performance Computing Center Stuttgart (HLRS), Germany, (2023).
  5. PPPL Computer Science Department’s Machine Learning seminar, Princeton University, US, (2021).
  6. Engineering Mind Podcast, (2021). https://youtu.be/d1O3dFgvAP4
  7. Applied Mathematics in Aerospace Engineering seminar, Universidad Politecnica de Madrid, Spain, (2021).
  8. Applied Math Colloquium, University North Carolina, US, (2021).
  9. Ocean Engineering, University Rhode Island, US, (2021).
  10. Fluid Dynamics Group at the Institute of High Performance Computing (A*STAR), Singapore, (2020).
  11. Fluid Structure Interactions Group Seminar series, University of Southampton, UK, (2020).
  12. Fluid Structure Interactions Group Seminar series, University of Southampton, UK, (2017).