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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

AERODYNAMICS AND FLIGHT MECHANICS GROUP

Doctor of Philosophy

MODELLING OF FLOW PAST LONG CYLINDRICAL STRUCTURES

by Bernat Font Garcia

Turbulent flows are fundamental in engineering and the environment, but their chaotic

and three-dimensional (3-D) nature makes them computationally expensive to simulate.

In this work, a dimensionality reduction technique is investigated to exploit flows pre-

senting an homogeneous direction, such as wake flows of extruded two-dimensional (2-D)

geometries. First, we examine the effect of the homogeneous direction span on the wake

turbulence dynamics of incompressible flow past a circular cylinder at Re = 104. It is

found that the presence of a solid wall induces 3-D structures even in highly constricted

domains. The 3-D structures are rapidly two-dimensionalised by the large-scale Kármán

vortices if the cylinder span is 50% of the diameter or less, as a result of the span being

shorter than the natural wake Mode B instability wavelength. It is also observed that

2-D and 3-D turbulence dynamics can coexist at certain points in the wake depending on

the domain geometric anisotropy. With this physical understanding, a 2-D data-driven

model that incorporates 3-D effects, as found in the 3-D wake flow, is presented. The

2-D model is derived from a novel flow decomposition based on a local spanwise average

of the flow, yielding the spanwise-averaged Navier–Stokes (SANS) equations. The 3-D

effects included in the SANS equations are in the form of spanwise-stress residual (SSR)

terms. The inclusion of the SSR terms in 2-D systems modifies the flow dynamics from

standard 2-D Navier–Stokes to spanwise-averaged dynamics. A machine-learning (ML)

model is employed to provide closure to the SANS equations. In the a-priori framework,

the ML model yields accurate predictions of the SSR terms, in contrast to a standard

eddy-viscosity model which completely fails to capture the closure term structures. The

trained ML model is also assessed for different Reynolds regimes and body shapes to

the training case where, despite some discrepancies in the shear-layer region, high cor-

relation values are still observed. In the a-posteriori analysis, while we find evidence of

known stability issues with long-time ML predictions for dynamical systems, the closed

SANS equations are still capable of predicting wake metrics and induced forces with

errors from 1-10%. This results in approximately an order of magnitude improvement

over standard 2-D simulations while reducing the computational cost of 3-D simulations

by 99.5%.
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Chapter 1

Introduction

Marine risers are long flexible cylindrical structures that extract oil and gas from subsea

oil fields to the surface (Fig. 1.1). Under ocean currents, they are exposed to vortex-

induced vibrations (VIV), a phenomenon arising in external flows past solid bodies which

is particularly important for long, thin and flexible body shapes. An alternate shedding

of vortices from the upper and the lower sides of the riser circular section, a.k.a von-

Kármán vortex street, creates an unsteady asymmetrical load pattern that stimulates

a vibrational state of the riser. This endangers the structure to severe fatigue reducing

its lifespan significantly. Besides the VIV phenomenon, wake-induced vibrations (WIV)

also come into the picture for structures composed by multiple risers, adding notable

complexity to the problem. WIV, or wake galloping, takes place when one body is

exposed to the non-uniform wake of another one. This phenomenon can cause larger

structural displacements compared to the VIV response of the isolated body (Assi, 2014).

In regard to the risers design, it is critical to correctly predict the lock-in conditions of

the structure. A state of resonance can occur when the shedding frequency is close to

the natural frequency of the riser yielding large vibration amplitudes. From the offshore

industry point of view, it is important to have reliable lock-in prediction models in order

to prevent the failure of the structure. To do so, experimental work is performed to

provide representative databases of the forces acting on the cylinder at different Reynolds

(Re) regimes and onset current profiles. From this data, semi-empirical structural and

hydrodynamic models can be derived which provide an estimation of fatigue damage

and predict the structural failure (Mukundan, 2008).

A disadvantage of semi-empirical models is that databases need to be repopulated every

time new conditions are considered for a novel riser design. Experimental work does not

often provide sufficient data points on Reynolds regimes and single testing frequencies

induce a reduced motion of the riser (Mukundan, 2008). Additionally, vibrations might

be restricted to the transverse (crossflow) direction alone since it is typically twice as

large as the inline (streamwise) response. However, omitting inline vibrations can yield

1
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Figure 1.1: Sketch of a marine riser exposed to a sheared onset current profile.

significant differences to realistic flexible mounted cylinder systems (Dahl et al., 2007).

The reasons behind these limitations are the dimensions of the riser (a full scale ex-

periment is very expensive and scaled experiments are hardly realistic), the number of

available sensors, and the correct reconstruction of the riser motion once the data is

processed. It is because of this that numerical simulations can greatly improve the risers

design process.

A complete approach to model flexible risers is to solve the incompressible Navier–Stokes

momentum equations taking into account the fluid-structure interaction (FSI). In short,

the momentum equations provide the forces induced to the structure which are then used

to calculate the structural displacements. The new solid configuration is considered for

the solution of the momentum equations at the next time step, and the process is re-

peated. Multiple methods have been developed to couple the interaction between fluid

and solid equations, typically solved by looping through both systems of equations al-

ternately. However, risers operate at high Reynolds regimes (104 < Re < 106) and have

a large extent (Lz ∼ 103 m) (Willden and Graham, 2001, 2004), making fully resolved

three-dimensional (3-D) fluid dynamics simulations unaffordable nowadays. Addition-

ally, the FSI problem further increases the computational requirements.

1.1 Background and motivation

Turbulence plays a crucial role on long cylindrical structures such as risers. As reported

in Evangelinos and Karniadakis (1999), the Reynolds number has a direct impact on the

vibration amplitude of the cylinder. Therefore, it is imperative to correctly capture the

turbulence nature of the flow for a realistic prediction of VIV and the fatigue that the

structure will suffer during its service time. From a computational cost standpoint, it is

impractical to fully resolve all fluid and structural scales inherent in the system because
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of the large extent of the structure and the high Reynolds regimes at which offshore

structures operate.

1.1.1 The computational cost of turbulence

Consider homogeneous isotropic turbulence in a L3 periodic box. Following (Pope, 2000,

p. 345), the spectral (Fourier) representation of the flow requires κmax = Nκ0/2 = πN/L

modes in each direction, where the lowest mode is κ0 = 2π/L and N is the number of

grid points per direction. The resolved number of modes indicates the effective Reynolds

number of the simulation. In physical space, the grid spacing is δx = L/N = π/κmax.

To resolve all spatial scales, δx must be in the order of the Kolmogorov lengthscale

η, which is the smallest scale of turbulence where vortical structures are destroyed by

viscous effects. A typical choice is δx/η = π/1.5. Also, L must be at least 8 times

the integral lengthscale L11, L = 8L11. From these constraints, it can be derived that

the required number of grid points per direction in homogeneous isotropic turbulence is

N ∼ 1.6Re
3/4
L , totalling N3 ∼ 4.4Re

9/4
L in the cubic domain. Similarly, time integration

methods must sufficiently resolve the Kolmogorov timescale of motion. This is ensured

by the Courant–Friedrichs–Lewy (CFL) condition which imposes that fluid particles

move less than one grid cell per time step. Considering a simulation time of 4 turbulence

timescales (τ), the resulting total number of time steps is M = 4τ/δt ∼ 38.2Re
3/4
L

(Coleman and Sandberg, 2010; Pope, 2000, p. 346).

Combining space and time resolution requirements, we find that N3M ∼ 169.3Re3
L

calculations are required to simulate 4 turbulence timescales of homogeneous isotropic

turbulence in a L3 box. Depending on the numerical implementation, a different number

of floating-point operations (FLOP) are required per pointwise calculation of the spatio-

temporal domain. Assuming 1000 FLOP per calculation (Pope, 2000, p. 348) and

ReL = 106 (similar to offshore applications), this would require 1.69 × 1023 FLOP.

Considering that the Iridis5 supercomputer at the University of Southampton offers 1.3

PFLOP/second peak, the simulation presented above would take more than 4 years of

CPU time to complete employing all its 20,000 processor-cores simultaneously.

The analysis above highlights the impracticality of fully-resolved simulations of high-

Reynolds flows, which are even less feasible for standard computers (GFLOP/second).

With the objective of reducing the computational cost, turbulence models are employed

to allow a coarser spatio-temporal discretisation of the problem domain. Briefly, the flow

field is decomposed into resolved and unresolved scales. The resolved scales are those

captured by the arbitrary discretisation level and the unresolved scales are those smaller

than the finest scale available in the discretised domain. Turbulence models account for

the physical effect of the unresolved scales by relating them to the resolved ones, thus

lowering the computational requirements. Popularly, the flow decomposition might be
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based in time averaging (a.k.a. Reynolds-averaged Navier–Stokes, RANS) or local spatial

filtering (a.k.a. large-eddy simulation, LES). The former models all turbulence scales

while the latter only models the subgrid scales representing the viscous dissipative effects

inherent in the high wavenumbers of the turbulence spectrum (for isotropic turbulence,

dissipative scales represent 99.98% of the spectrum as noted in Pope (2000), p. 350).

It is important to realise that turbulence models can decrease the accuracy of the solu-

tion when the physical hypothesis linking resolved and unresolved scales does not hold.

Additionally, it is also a non-trivial task to select the specific turbulence model which

best fits the problem, or the semi-empirical constant values used to tune the model.

1.1.2 The importance of three-dimensional effects

As a result of the high computational cost of turbulence, fully resolved numerical inves-

tigations (a.k.a. direct numerical simulations, DNS) on VIV of long flexible cylinders

have been limited to low Reynolds numbers and short spans. Evangelinos and Karni-

adakis (1999) investigated rigid and flexible cylinders for Re = 103 and aspect ratio

Lz/D = 100 (where D is the cylinder diameter) finding travelling wave motions on the

structural response when the cylinder was allowed to vibrate. Lucor et al. (2001) studied

the effect of the oncoming flow profile on a flexible cylinder in the transverse direction

for an aspect ratio of 500 < Lz/D < 1000 and Re = 103. Bourguet et al. (2011) stud-

ied a flexible cylinder for Lz/D = 200 allowed to vibrate in the inline and transverse

directions within the 100 < Re < 1100 range.

Attempting to study VIV for Reynolds regimes more relevant to offshore engineering

applications, Huang et al. (2011) investigated risers at the order of Re = 104 and Lz/D =

1000. However, a compromise in the spanwise resolution (δz) was required to achieve

feasible computational times, ranging from δz/D ∼ 5 for Lz/D = 482, to δz/D ∼ 34

for Lz/D = 3350. Evidently, most of the 3-D turbulence scales are missed with this

spanwise discretisation resulting in a two-dimensionalised wake. In this fashion, Holmes

et al. (2006) studied a similar case and concluded that a coarse spanwise resolution

yields discrepancies in the prediction of the forces induced to the cylinder. Authors often

justify the use of a coarse spanwise resolution pointing at the increase of the spanwise

correlation length (λz) of the turbulent wake when the cylinder is allowed to vibrate

in the transverse direction (Toebes, 1969; Blevins, 1974; Wu et al., 1994). Although it

has been demonstrated that the structural response can display lower spanwise modes

under transverse vibrations, the turbulent wake still presents 3-D small-scale structures

along the homogeneous direction. As mentioned in Toebes (1969): “At the same time

it is clear that some distortion in the axial direction remains present. It is plausible to

regard this distortion as being “fed back” from the wake structure whose large features

must sooner or later be deformed by instability and diffusing turbulence”. Hence, not
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accounting for the physical effect of 3-D small-scale structures (i.e. diffusing turbulence)

means to disregard the natural dissipation mechanism in the turbulent wake.

Mittal and Balachandar (1995) investigated the physical traits of 2-D and 3-D wakes at

Re = 525 to explain why different forces are captured on both systems. Higher in-plane

(x–y) Reynolds stresses were found in the 2-D simulation (these being more pronounced

for bluffer bodies) as well as a shorter distance from the vortices roll-up to the cylinder.

Although larger turbulent fluctuations have been found in 2-D simulations, these do not

explain why the 3-D behaviour is lost when the spanwise direction is constrained.

An important note also provided by Mittal and Balachandar (1995) states that:

“An understanding of the basic mechanisms that result in the discrepancy

between 2-D and 3-D results could eventually lead to the incorporation of

additional physics, which would allow 2-D simulations to predict the aero-

dynamic forces more accurately.”

With this purpose, the first part of the thesis investigates the different turbulence dy-

namics encountered in 2-D and 3-D wakes of flow past a circular cylinder at a high

Reynolds regime.

1.1.3 Modelling by dimensionality reduction

The high computational cost of fully-resolved 3-D simulations of long flexible cylinders

has motivated authors to investigate alternative numerical approaches. Beyond RANS

and LES, a dimensionality reduction of the problem can yield even more astonishing

gains from the computational cost standpoint.

Flow past a long fixed cylinder is characterised by spanwise cells of synchronised shedding

frequency (Noack et al., 1991; Kappler et al., 2005; Bourguet et al., 2011). Also, as

previously mentioned, the spanwise correlation length of large-scale structures increases

for flexible cylinders vibrating in the transverse direction. Because of this, tackling

the problem from a 2-D standpoint becomes reasonable: 2-D planes can be placed at

informed positions along the span correctly sampling the spanwise cells, a.k.a. strip

theory (see Fig. 4.1). For long cylindrical structures, strip-theory methods allow to

simulate the whole physical domain in realistic computational times (Herfjord et al.,

1999; Willden and Graham, 2001). For example, reducing the homogeneous isotropic

turbulence case dimensionality from 3-D to 2-D effectively cuts the computational cost

with O(1.6Re
3/4
L ). This translates to 40 minutes instead of 4 years of computational time

using all the Iridis5 supercomputer power. For multiple 2-D planes, the computational

cost is reduced with O(1.6Re
3/4
L /P ), where P is the number of 2-D planes.
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Figure 1.2: Sketch of the standard 2-D strip-theory method. The original Lz span is
decomposed into multiple planes in which the 2-D Navier–Stokes equations are solved.

On the other hand, the dimensionality reduction of strip-theory methods also means

that the 3-D physics inherent in the turbulent wake are ignored. As reviewed, this has

severe implications for the forces induced to the cylinder. For 3-D flows, the vortex-

stretching mechanism causes large turbulence scales to break down until the smallest

possible scale of turbulence, where the energy is dissipated because of viscous effects.

However, since this mechanism is not present in 2-D systems, vortex-merging and vortex-

thinning processes dominate the wake causing coherent and energetic vortical structures

(Boffetta and Ecke, 2012; Xiao et al., 2009). For strip-theory methods, authors include

arbitrary dissipative turbulence models, often in the form of LES Smagorinsky models,

to reduce the strength of the coherent vortices developing in the 2-D wake (Bao et al.,

2016).

The inclusion of 3-D physics into the 2-D planes of strip-theory methods can yield more

physical predictions while maintaining the low computational cost of the 2-D approach.

This can improve the simulation of flow past long flexible cylinders arising in different

applications such as marine risers and cables, power transmission lines, aircraft wings,

wind turbine blades, among other offshore, civil and aerospace engineering projects.

1.2 Research objectives and approach

As exposed in the previous section, current 2-D strip-theory methods lack the inclusion

of 3-D physics which have a significant impact on the prediction of flow past long flex-

ible structures. This motivates the following fundamental questions which have been

investigated in this work:

1. Why are standard 2-D systems physically not suited for the simulation of flow past

long cylinders at high Re?

2. What role does 3-D turbulence play in the wake of a long cylinder and how does

it interact with the 2-D Kármán dynamics?

3. How can 3-D effects be incorporated and modelled in a 2-D system?
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The following investigations have been conducted to provide novel findings on the stated

research questions:

1. A parametric study of the span effect on the turbulence dynamics of flow past

a circular cylinder at Re = 104. This provides physical understanding on the

implications of using 2-D simulations for 3-D turbulent flows and the cross-over

between 2-D and 3-D turbulence.

2. The derivation of a novel 2-D model based on a spanwise-average decomposition of

the flow. This system accounts for 3-D effects and allows to recover the unsteady

spanwise-averaged solution of the flow in a 2-D framework.

3. The design of a machine-learning (ML) model providing closure to the spanwise-

averaged system of equations.

1.3 Thesis outline and contributions

The thesis outline and the author’s contributions for each chapter is detailed next. Note

that specific literature review is provided in the introductory part of the main content

chapters (Chapter 3, Chapter 4 & Chapter 5). Additionally, chapters also include an

opening paragraph summarising their specific motivation, conducted research and main

findings.

Chapter 1 provides an introduction to the current work explaining the background and

the justification of the thesis. The research questions and the adopted investigations are

specified as well.

Chapter 2 poses the incompressible flow system of equations and the numerical approach

implemented in the in-house solver used throughout this work.

Chapter 3 analyses the turbulence dynamics in the wake of a circular cylinder at Re =

104 as the span is constricted. This chapter provides novel results with respect to the

domain geometric anisotropy effect on the wake turbulence dynamics in the presence

of a solid wall, in contrast with previous studies only considering obstacle-free flows.

Appendix A includes information on the phenomena arising in flow past circular cylinder

at different Reynolds regimes. Appendix B contains a validation and verification study

of the in-house solver for this particular test case. The initial stage of this work was

published in a conference paper for the OCEANS 2017 meeting. The complete study

has been published in the Journal of Fluids Mechanics:

• Font et al. (2017) Analysis of two-dimensional and three-dimensional wakes of long

circular cylinders. In OCEANS 2017 - Aberdeen. IEEE.
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• Font et al. (2019) Span effect on the turbulence nature of flow past a circular

cylinder. Journal of Fluid Mechanics 878, 306–323

Chapter 4 introduces the spanwise-averaged Navier–Stokes (SANS) equations, a novel

2-D system of equations including 3-D physics through closure terms in the governing

equations. A SANS-based strip-theory framework accounts for 3-D effects otherwise

not considered in standard 2-D strip-theory methods, where unphysical dissipative tur-

bulence models are added in order to mitigate their intrinsic limitations. Additional

derivations related to SANS are provided in Appendix C. The perfect closure is evalu-

ated for the Taylor–Green vortex and the circular cylinder cases. An a-priori assessment

of an standard eddy-viscosity model is performed. This research has been submitted

together with Chapter 5:

• Font et al. (2020 submitted) Deep learning the spanwise-averaged Navier–Stokes

equations.

Chapter 5 proposes a ML model for the closure of the novel SANS equations. A-priori

and a-posteriori results are shown for the circular cylinder test case, comprising the

second part of Font et al. (2020 submitted). A generalisation study of the ML model

to flow configuration different to the training case is also presented. Additionally, a

hyper-parametric study of the ML model is provided in Appendix D, which constitutes

a peer-reviewed paper accepted for the 33rd Symposium on Naval Hydrodynamics,

• Font et al. (2020 accepted) Turbulent wake predictions using deep convolutional

neural networks. In 33rd Symposium on Naval Hydrodynamics, Osaka, Japan.

Chapter 6 summarises the main findings and limitations as well as future work recom-

mendations.

This research has been presented by the author in the following international conferences:

• Font B., Weymouth, G.D., Nguyen, V.-T. & Tutty, O.R. 2019 Deep learning the

spanwise-averaged wake of a circular cylinder. 72nd Meeting of the APS Division

of Fluid Dynamics, Seattle, US.

• Font B., Elizalde, I., Weymouth, G.D., Nguyen, V.-T. & Tutty, O.R. 2019 Tur-

bulence dynamics transition of flow past a circular cylinder and the prediction of

vortex-induced forces. European Turbulence Conference 17, Torino, Italy.

• Font B., Weymouth, G.D. & Tutty, O.R. 2017 Analysis of two-dimensional and

three-dimensional wakes of long circular cylinders. OCEANS 2017, Aberdeen, UK.

• Font B., Weymouth, G.D. & Tutty, O.R. 2016 A two-dimensional model for three-

dimensional symmetric flows. UK Fluids Conference, London, UK.

https://meetings.aps.org/Meeting/DFD19/Session/L17.5
https://etc17.fyper.com/program/show_slot/41
https://doi.org/10.1109/OCEANSE.2017.8084904
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/aeronautics/UK-Fluids-Conference-2016-booklet.pdf


Chapter 2

Theoretical background

This chapter comprises high-level theoretical background in incompressible fluid flow

and its numerical solution. The incompressible flow dynamics is first presented yield-

ing the governing system of equations. The numerical method providing an approxi-

mate solution of the equation system is also explained as implemented in our in-house

code, “Lotus”. A finite-volume method is employed to spatially discretise the system

domain. The flux-limited quadratic upstream interpolation for convective kinematics

(QUICK) scheme numerically approximates the convective term of the momentum equa-

tions, which also serves as an implicit model for the subgrid scale (SGS) structures of

the flow. A central-difference scheme is used for the viscous term. A predictor-corrector

scheme integrates the numerical solution in time. The boundary data immersion method

is applied to account for solid boundaries. Finally, a multigrid method is employed to

iteratively solve the pressure-Poisson equation and enforce the continuity condition in

the velocity field.

2.1 Governing equations of incompressible fluid flow

Incompressible fluid flow is governed by the conservation of mass and momentum, re-

spectively the continuity equation and the Navier–Stokes momentum equations

∇ · u = 0, (2.1)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, (2.2)

where u (x, t) = (u, v, w) is the velocity vector field, p (x, t) is the pressure field, t is the

time, and x = (x, y, z) is the spatial vector. The coupling of pressure and velocity arises

from an additional relationship obtained by taking the divergence of the momentum

9
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equations, namely the pressure-Poisson equation

∇ ·
(
∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u

)
, (2.3)

∇2p = ∇ ·
(
h− ∂u

∂t

)
, (2.4)

where h is the force combining convective and viscous terms.

The system of equations is bounded by case-dependant initial and boundary conditions

of the system variables. Importantly, the boundary condition with solid domains is the

velocity no-slip condition, i.e. ub = 0, which yields the flow boundary layer.

The Reynolds number is the non-dimensional parameter describing the ratio between

convective and viscous forces,

Re =
ρUL

µ
, (2.5)

where ρ is the fluid density (assumed constant for incompressible flows), µ is the dynamic

fluid viscosity, and L and U are the characteristic length and velocity of the system,

respectively. The Reynolds number defines the scales of motion of the flow. When the

convective forces are much greater than the viscous forces, turbulence develops. The

definition of turbulence is not straight forward, but (loosely) it can be thought as the

turning point where the fluid dynamics transitions from ordered to chaotic as a result

of the nonlinear convective term. Still, physical laws revealing certain order within the

turbulence dynamics have been found in the past. In particular, it is known that 3-

D systems present a constant rate of kinetic energy transfer within a certain range of

scales, from large to small structures, a.k.a. direct energy cascade (Richardson, 1922;

Kolmogorov, 1941). Similarly, a constant rate is also found in 2-D systems although

energy is inversely transfered from small to large scales, a.k.a. inverse energy cascade

(Kraichnan, 1967; Leith, 1968; Batchelor, 1969). Such different dynamics will be subject

of investigation in the following chapters.

2.2 Numerical methods

2.2.1 Spatial discretisation

The governing equations comprising Eq. 2.1, Eq. 2.2, and Eq. 2.4 are spatially discre-

tised in a structured rectilinear grid using a finite-volume method. This grid facilitates

the implementation of the immersed boundary method accounting for solid boundary

conditions, as described in § 2.2.4. The flow variables, pressure and velocity, are stag-

gered: the pressure scalar field is stored in the cell centre and the velocity vector field is

defined at the cell faces, as displayed in Fig. 2.1.
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Figure 2.1: Staggered grid. The control volume for the pressure is defined in blue. The
control volume for the u velocity component is defined in green.

The convective term of the momentum equations is numerically approximated using a

flux-limited QUICK scheme. This scheme interpolates the quantity of interest at the

control volume face through a weighted quadratic function fitted with one upstream and

two downstream points (Leonard, 1979). The spatial derivative is then approximated

using the numerical fluxes given by the cell-face values as defined by the finite-volume

approach.

2.2.2 Implicit modelling

As previously exposed, high-Reynolds flows need to be sufficiently discretised in space

and time to fully resolve all scales of motion. The spatial SGS need to be modelled when

the grid is not fine enough. In this sense, we employ an implicit LES (iLES) model, in

which the dissipative effect of the SGS is accounted by the numerical dissipation intrinsic

in the discretisation scheme of the convective term (the QUICK scheme in the present

solver).

Importantly, the instantaneous kinetic energy (E) dissipation rate (ε)

dE

dt
= −ε (2.6)

needs to match the natural dissipation mechanism of the flow. This balance can be used

to compute the iLES effective Reynolds number (or effective kinematic viscosity, νe),

which can be found through the following evaluation (Domaradzki et al., 2003; Aspden

et al., 2008; Zhou et al., 2014)

d

dt

∫
Ω

1

2
|u|2 dΩ = −2ν

∫
Ω
SijSij dΩ, (2.7)
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where Sij is the velocity rate-of-strain tensor. Note that the RHS is the energy dissi-

pation term for incompressible flow arising naturally in the energy transport equation

(formally derived from a dot product of the Navier–Stokes momentum equations and

the velocity vector field) since (Doering and Gibbon, 1995, p. 17)

1

2

∫
Ω
||∇u||2 dΩ =

1

2

∫
Ω
|ω|2 dΩ ≡ Z, (2.8)

where ω = ∇× u is the vorticity vector field, Z is the enstrophy, and || · || denotes the

tensor Frobenius norm.

Using Eq. 2.7, the iLES effective viscosity is computed as

νe =
〈ε〉Ω

2
〈
SijSij

〉
Ω

, (2.9)

where 〈·〉Ω denotes a volume average. Hendrickson et al. (2019) verified the present

in-house solver by monitoring the grid-scaled effective viscosity νe∆
−1 for the Taylor–

Green vortex case. It was shown that the QUICK scheme linearly scales the effective

viscosity with ∆.

2.2.3 Temporal discretisation

The temporal evolution of the system of equations (Eq. 2.1, Eq. 2.2 and Eq. 2.4) is

discretised using Chorin’s projection method (Chorin, 1967, 1968). In short, the Navier–

Stokes operator is split in two parts

u∗ − un
δt

= ν∇2un − (un · ∇)un, (2.10)

un+1 − u∗
δt

= −∇pn+1, (2.11)

where the superscript (·)n refers to the time step level and the intermediate velocity field

is noted with the superscript (·)∗. The computation of a non-solenoidal intermediate

velocity field allows to decouple the velocity and pressure equations. In this way, a

solenoidal velocity field un+1 can be obtained by enforcing the continuity condition into

the pn+1 pressure-Poisson equation. Otherwise, using pn to compute un+1 would not

enforce the velocity field to be divergence-free at the next time step.

The projection method is implemented in a predictor-corrector algorithm. Next, we note

h(u) = ν∇2u − (u · ∇)u, and hn = h(un). The (·)s superscript refers to a solenoidal

field. With this, the predictor-corrector algorithm is implemented in two steps as follows
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Predictor step :

1. u∗ = un + hnδt, (2.12)

2. δt∇2p∗ = ∇ · u∗, (2.13)

3. u∗,s = u∗ − δt∇p∗.

Corrector step :

4. u∗ = un +
1

2

(
hn + h∗,s

)
δt, (2.14)

5. δt∇2pn+1 = ∇ · u∗, (2.15)

6. un+1 = u∗ − δt∇pn+1. (2.16)

Note that the divergence-free constraint for both un and un+1 has been considered. Also

note that the forward Euler time stepping scheme is implemented in the predictor step

to compute the intermediate velocity field u∗, finally projected into a solenoidal field

by the pressure-Poisson equation yielding u∗,s. With this, the trapezoidal quadrature

can be employed in the corrector step to integrate the solution from time n to n + 1,

as described in step 4. The solution is again projected into a divergence-free field by

solving the pressure-Poisson equation for pn+1 (step 5) and correcting the velocity field

with the new pressure field (step 6) yielding un+1.

The advantage of this method is that it exploits the benefits of both explicit and implicit

time-marching schemes: it combines the natural stability of implicit schemes with the

low memory requirements of explicit schemes. It can be shown that the predictor-

corrector algorithm is second-order accurate in time. The reader is referred to Ferziger

and Perić (2002) for further details.

The time discretisation method is bounded to the limitation of the time step size (δt).

For this, the local Courant number (u δt/δx) and Péclet number (ν δt/(δx)2) are evalu-

ated at every time step yielding an adaptive step size. These dimensionless parameters

quantify the characteristic convection time and characteristic diffusivity time of the flow,

respectively. A combination of both yields to a time step size limit (for one-dimensional

flow) of

δt <

[
2ν

min
[
(δx)2

] + max

(
u

δx

)]−1

. (2.17)

2.2.4 Solid boundaries

The velocity no-slip condition at solid boundaries is implemented using the boundary

data immersion method (BDIM) from Weymouth and Yue (2011). Immersed boundary
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(IB) methods, such as BDIM, take into account the solid wall effect in a rectilinear

non-conforming grid. The Dirichlet condition on the velocity field is interpolated at the

grid nodes from its actual position. The interpolation method is what differs among IB

methods.

A clear advantage of IB methods is the trivial grid-generation process, in contrast to the

complicated meshing process regularly encountered for body-conforming grids. Also in

this regard, the body geometry is practically irrelevant for the grid generation process.

Other advantages include the simulation of moving bodies since the grid does not need

to be updated at every step, as well as the straightforward implementation of numerical

schemes. On the other hand, accuracy near the solid boundary can be compromised

depending on the effective resolution of the non-conforming grid. Also, the implementa-

tion of the solid boundary condition is not as trivial as in body-conforming grids (Mittal

and Iaccarino, 2005).

The BDIM consists in mapping the fluid governing equation (F) and the solid governing

equation (B) into a single meta-equation (M) discretised in a non-conforming rectilin-

ear staggered grid. A convolution kernel (Kε) provides a smooth transition between

the mediums enforcing the velocity condition at the interface (see Fig. 2.2) while ex-

tending the fluid subdomain (Ωf ) and solid subdomain (Ωb) to the full single domain

(Ω). Imposing the no-slip condition on a static body, this method can be summarised

as follows

F(u, p) = ∂tu− h+∇p = 0, (2.18)

B(u) = u = 0, (2.19)

M(u, p) = F(u, p) (1− δε) + B (u) δε = 0, (2.20)

where the convolution between kernel and governing equation has been approximated

using (e.g)

Bε (x) =

∫
Ωb

B (xb)Kε (x,xb) dxb ≈ B (x)

∫
Ωb

Kε (x,xb) dxb, (2.21)

Bε (x) ≈ B (x) δε, (2.22)

where δε is the integrated kernel over the subdomain which can take the approximated

form

δε(d) =


1
2 [1 + sin(π2

d
ε )] for |d| < ε

1 for d < −ε
0 else

(2.23)

where d is a signed-distance function from a point x to the solid interface. This ap-

proximation results into a first-order accurate scheme, although high-order terms can be

considered to improve the order of accuracy (Maertens and Weymouth, 2015).
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Figure 2.2: BDIM sketch adapted from Maertens and Weymouth (2015). A convolution
kernel with radius ε smooths the interface between solid (Ωb) and fluid (Ωf ) subdomains.

The BDIM has been tested in multiple applications and the reader is referred to Maertens

and Weymouth (2015) for an extended mathematical description of the method, and to

Schulmeister et al. (2017) for further validation on bluff body cases.

2.2.5 Pressure solver

A multigrid method is used to solve the pressure-Poisson equation as discretised in the

pressure-corrector algorithm (Eq. 2.13 and Eq. 2.15). Algebraically, the pressure-Poisson

equation can be written as a linear system of equations

Ax = b, (2.24)

where A is a sparse matrix containing the discretised Laplacian operator, x is the

pressure field arranged in a column vector, and b is the column vector of the intermediate

velocity field divergence.

Contrary to direct methods, a multigrid solver is an iterative method in the sense that

that a guessed solution xn (at the iteration n) is evaluated yielding a residual

rn = Axn − b, (2.25)

and an error

εn = x− xn, (2.26)

which are related by

Aεn = rn. (2.27)

The objective is to iteratively minimise rn so that xn converges to x.
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In multigrid methods, iterations are performed from fine to coarse grids, transferring

the residual across grid levels so that iterations become cheaper as the grid is coarsened.

Hence, multigrid methods yield a speed-up of the overall convergence process. Iterations

can be carried with any iterative method, e.g. Gauss–Seidel, Jacobi, conjugate gradient,

etc. In our solver, a single Jacobi iteration to smooth the solution is performed before

downsampling the residual to a coarser level. Downsampling (in one-dimensional form)

is performed from
1

(δx)2

(
εni−1 − 2εni + εni+1

)
= rni , (2.28)

where the subscript (·)i denotes the fine grid cell index, to

1

(δX)2

(
εnI−1 − 2εnI + εnI+1

)
= rnI , (2.29)

where the subscript (·)I denotes the coarse grid cell index. The relationship between

both grids might be δX = 2δx, hence the I (coarse grid) control volume is defined as

the i (fine grid) control volume plus half of its neighbour control volumes (i + 1 and

i− 1) (Ferziger and Perić, 2002).

The residual can be gradually downsampled to an arbitrary coarse grid using linear

interpolation for each downsampling step. Similarly, the residual is upsampled from the

coarsest grid to the original fine grid while iterating in the mid level grids to correct the

fine grid solution. We employ a conjugate gradient method after each upsampling step to

update the solution. This downsampling and upsampling process is known as a V-cycle.

Multiple V-cycles can be performed in a single time step to solve the pressure-Poisson

equation. The iterative method is stopped once the convergence tolerance is reached.

The following convergence tolerance criteria is defined in a grid with cell index i

1

Ω

∑
i

∣∣∣ ∮ u · n̂dS
∣∣∣ < 10−6 (2.30)

max
i

∣∣∣ ∮ u · n̂dS
∣∣∣ < 10−5 ∀i ∈ Ω, (2.31)

establishing the allowed average velocity divergence error in Ω as well as its maximum

local error.



Chapter 3

Span effect on the turbulence

nature of flow past a circular

cylinder

Turbulent flow evolution and energy cascades are significantly different in 2-D and 3-D

flows. Studies have investigated these differences in obstacle-free turbulent flows, but

solid boundaries have an important impact on the cross-over from 3-D to 2-D turbulence

dynamics. In this chapter, the span effect on the turbulence nature of flow past a

circular cylinder at Re = 104 is investigated. It is found that even for highly anisotropic

geometries, 3-D small-scale structures detach from the walls. Additionally, the natural

large-scale rotation of the Kármán vortices rapidly two-dimensionalises those structures

if the span is 50% of the diameter or less. This is linked to the span being shorter than

the Mode B instability wavelength. The conflicting 3-D small-scale structures and 2-D

Kármán vortices result in 2-D and 3-D turbulence dynamics which can coexist at certain

locations of the wake depending on the domain geometric anisotropy.

3.1 Introduction and literature review

Incompressible viscous flow past 2-D bluff bodies involves complex physics such as the

von-Kármán street phenomenon as well as 3-D wake dynamics as the Reynolds number is

increased (Roshko, 1954; Williamson, 1996a,b). Due to the two-dimensionality of circular

cylinders, some authors have used the 2-D Navier–Stokes equations on multiple planes

located along the span of the cylinder as a simplified model of the three-dimensionality

without increased computational cost (a.k.a. strip-theory method, see § 1.1.3). Such

strip-theory methods are used in offshore and civil engineering applications to model

flow along slender structures where the computational cost of fully resolved simulations

17
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is prohibitive, such as marine risers, tow and mooring cable systems, and tall pillars.

However, the physics inherent in 2-D simulations lead to poor 3-D predictions (Bao

et al., 2016), and a better understanding of the evolution from 3-D to 2-D turbulent

wakes is needed to improve strip-theory methods.

The fluid mechanics of turbulent flows behave quite differently when the spanwise spatial

dimension is much more constrained than the others. Instead of having a direct cascade

of the turbulence kinetic energy (TKE) from the integral scales down to the dissipative

scales, there is a dual cascade of (direct) enstrophy and (inverse) energy. This was first

suggested by Kraichnan (1967) and further developed by Leith (1968) and Batchelor

(1969) (known as the KLB 2-D turbulence theory). More recently, the dual cascade

has been demonstrated both experimentally and computationally (for a comprehensive

review see Boffetta and Ecke, 2012). Studies such as Xiao et al. (2009) have shown that

physical processes of vortex thinning and vortex merging dominate the dynamics of 2-D

turbulence generating larger and more intense vortical structures the energy of which

piles up at the integral scale for bounded domains.

Previous work has studied the transition between 2-D and 3-D dynamics in obstacle-free

turbulent flows in detail. The effect of the Lz constriction on the TKE distribution across

the scales (or wavenumbers κ) is sketched in Fig. 3.1. By constricting the domain, the

size of the 3-D energy-containing structures (integral-scale structures) is reduced. Since

the energy-containing structures feed the inertial subrange structures down to the 3-D

small-scale dissipative structures, smaller integral-scale structures result in less energy

fed into the inertial subrange structures and, consequently, to the dissipative structures.

In the 2-D limit, no 3-D dissipative structures are present and, because of the lack of a

dissipation mechanism, the turbulent vortical structures can only merge. This creates

larger structures promoting an inverse energy cascade as shown in Kraichnan (1967);

Leith (1968); Batchelor (1969).

Smith et al. (1996) reviewed the aspect ratio depth effect together with a rotation effect

of forced turbulence on a Lx × Ly × Lz periodic box. It was found that the turbulence

dimensionality of the flow depended not only on the geometry constriction (Lz/Lx),

but also on the rotation intensity. A critical ratio between the span and the turbulence

forcing scale was revealed below which two-dimensionalisation occurred for non-rotating

cases. Furthermore, it was found that higher rotation rates induced a more significant

2-D turbulence behaviour and that direct and inverse energy cascades for small and

large scales can coexist respectively. Celani et al. (2010) found a similar splitting of the

turbulence cascade for a critical value of the relative forcing scale on a depth-restricted

periodic box.

These differences between 2-D and 3-D turbulence dynamics have a significant practical

impact. For example, the forces induced on a cylinder are larger in magnitude and

variability in 2-D systems (Mittal and Balachandar, 1995; Norberg, 2003). In an attempt
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Figure 3.1: Sketch of the TKE cascade distribution across the scales as the span is
reduced. By constricting the domain, the integral scale is reduced and the energy-
containing scales can feed less energy to the inertial and dissipative scales.

to dissipate the energised vortical structures and to prevent the vortex-merging dynamics

of 2-D turbulence, models based on the eddy-viscosity hypothesis (a.k.a. the Boussinesq

hypothesis) are incorporated into 2-D strip-theory methods. However, these models

assume that the anisotropic Reynolds-stress tensor is proportional to the mean rate-of-

strain tensor by the scalar eddy viscosity, a relation which has been proven inaccurate

even for simple shear flows (Pope, 2000, p. 94) and can potentially yield incorrect forces

induced to the cylinder. A further complication for strip theory is that the presence of

walls adds a production mechanism of 3-D turbulence which is able to generate very fine

3-D vortical structures even in highly anisotropic geometries.

A “thick” strip-theory method proposed by Bao et al. (2016) showed how strips with

a certain thickness are able develop to 3-D turbulence when its span is larger than the

wavelength of the Mode B instability of circular cylinders, λz/D ≈ 1 (see Appendix A

for a summary of phenomena arising in flow past a circular cylinder at different Reynolds

regimes). In fact, this instability creates rib-like streamwise vortical structures along the

main Kármán 2-D vortices (Noack, 1999a). Therefore, it can be argued that the two-

dimensionalisation of the wake arises from the geometry constriction which prevents the

rib-like vortices developing when there is not room enough for its natural wavelength.

However, the connection between wake and wall turbulence and the persistence of 3-D

turbulent structures in constricted span flows has not been fully explored.

This work studies the geometry constriction effect on the turbulence nature of a flow

past a circular cylinder at Re = 104. To do this, a series of simulations ranging from

Lz = 10 to pure 2-D planes have been considered. As discussed above, the inclusion of a

body boundary provides an important change to the turbulence production mechanisms

compared to previous research as well as novel information on the transition and cross-

over between 3-D and 2-D turbulence for very constricted domains in wall-generated
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Figure 3.2: Computational domain sketch non-dimensionalised with the cylinder diam-
eter D. A very fine Cartesian grid domain (depicted in discontinuous lines) surrounds
the cylinder and the close- and mid-wake regions. A stretched rectilinear grid (depicted
in solid lines) transitions from the Cartesian grid to the boundaries.

turbulent shear flows. Multiple turbulence statistics are presented for the wide range of

constricted wakes, providing new data on the transition from 3-D to 2-D turbulence.

3.2 Problem formulation

This study considers flow past a circular cylinder with diameter D aligned on the z

direction in a 3-D (35× 20× Lz)D rectangular domain, where Lz is the non-dimensional

span. To study the span effect on the turbulence nature of the wake, the following cases

have been considered: Lz = 10, π, 1, 0.5, 0.25, 0.1 as well as a fully 2-D case.

A Reynolds number of Re = 104 is selected. We define the Reynolds number as

Re =
UD

ν
, (3.1)

where U is the scaling velocity and ν is the kinematic viscosity of the fluid. Using

this Reynolds number we ensure that the flow is well within the turbulence regime

encompassing very different spatial and temporal scales in addition to the availability

of DNS data (Dong and Karniadakis, 2005) which is used to validate our results in

Appendix B.

The incompressible viscous fluid motion is described by the continuity equation and the

non-dimensional Navier–Stokes momentum equations

∇ · u = 0, (3.2)

∂tu+ (u · ∇)u = −∇p+Re−1∇2u. (3.3)
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Velocity and pressure fields are coupled with the pressure-Poisson equation. The initial

condition is defined as u (x, 0) = (1, 0, 0) in the fluid. The boundary conditions are:

a uniform velocity profile on the inlet boundary, a natural convection condition on the

outlet boundary, a no-penetration slip condition on the upper and lower boundaries, a

periodic condition on the spanwise direction boundaries and a no-slip velocity condition

on the cylinder. Periodic boundary conditions on the constricting planes are used as in

previous studies on the cross-over of 2-D and 3-D turbulence for obstacle-free flows such

as Smith et al. (1996), Celani et al. (2010) and Biancofiore (2014). This choice is made to

avoid the artificial high intensity turbulence enhancements and the deterioration of the

2-D behaviour of the flow when a no-penetration condition is enforced on the constricting

planes, as noted on Biancofiore et al. (2012) for obstacle-free turbulent wakes. Other

studies such as Bao et al. (2016) and Bao et al. (2019) also use a periodic spanwise

condition for thick strips modelling long circular cylinders.

The numerical methods to solve the governing system of equations have been described

in Chapter 2. Particularly for the circular cylinder case, the domain is composed

of a sufficiently fine Cartesian grid for the close- and mid-wake regions defined as(
Lx × Ly × Lz

)
D, where Lx and Ly are the non-dimensional horizontal and vertical

lengths respectively. A stretched grid is considered for the regions far from the cylinder

(see Fig. 3.2). A resolution of 90 cells per diameter in all spatial directions is chosen for

the Cartesian grid subdomain. The resolution in all spatial directions is kept constant

as the span is reduced.

The 3-D simulations are started from a three-dimensionalised 2-D flow snapshot. A time

length of t∗0 = 200 (t∗ = tU/D) is simulated before starting to record the flow statistics

in order to achieve a statistically stationary state of the wake. The flow statistics are

then recorded for a total of ∆t∗ = t∗ − t∗0 = 500 convective time units (around 100

wake cycles). A verification and validation of the wake turbulence dynamics of the

investigated test case is included in Appendix B. Finally, the turbulence statistics of the

Lz = 10 and Lz = π cases are very similar as displayed in Fig. 3.5a. Hence, only the

Lz = π results are displayed on the other figures for clarity.

3.3 Results and discussion

The flow field is displayed in Fig. 3.3 in terms of the instantaneous vorticity component

ωz as the span is varied. The most striking feature is how the coherence of the Kármán

vortices increases as the span is reduced. However, even in highly-anisotropic geometries

such as Lz = 0.25, small-scale 3-D structures are generated from the cylinder wall.

An important result is that the two-dimensionalisation of these structures is faster (in

the sense that it occurs closer to the cylinder) as the domain is constricted because

of the geometry constriction and the natural rotation of the Kármán vortices. The
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Figure 3.3: Instantaneous vorticity ωz (red is positive, blue is negative) at the z = Lz/2
plane for: (a) Lz = 0, (b) Lz = 0.1, (c) Lz = 0.25, (d) Lz = 0.5, (e) Lz = 1, (f) Lz = π.

combination of these two mechanisms as a two-dimensionalisation method is also found

in Smith et al. (1996) and Xia et al. (2011). For the Lz ≥ 1 cases, the 3-D small-scales

structures detaching from the cylinder wall are not two-dimensionalised as rapidly. In

fact, it can be appreciated that only the far wake region of the Lz = 1 case displays a

coherent Kármán vortex. This means that less anisotropic geometries promote a direct

TKE cascade on the wake so that the 3-D dissipative structures are still sustained far

from the cylinder.

Whether the wake turbulence dynamics is 2-D or 3-D is better captured on the TKE

spectra which can be directly compared to classic turbulence theory. For this, the

Taylor’s hypothesis is considered and the temporal spectrum at different points of the

wake is calculated. Fig. 3.4 a,b,c shows the temporal power spectrum (PS) of the v

velocity component at (x, y) = (2, 0.8), (4, 0.8), (8, 0.8). The Welch method (using a

time signal of 500 units split in 6 parts with 75% overlapping) has been employed to

compute the spectra at 8 different points along the span for each (x, y) point. These

spectra are then averaged resulting in a single spectrum for each case.

First, note that all of the spectra display a peak around the 0.2 non-dimensional fre-

quency corresponding to the non-dimensional Strouhal number, St = fsD/U , where fs

is the vortex-shedding frequency. A smaller harmonic peak around 0.4 non-dimensional

frequency is also found for the spectra at (x, y) = (2, 0.8), (4, 0.8). Second, the spectrum
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at the closest analysed point to the cylinder (Fig. 3.4a) displays a 3-D turbulence be-

haviour with a −5/3 decaying rate with the exception of the pure 2-D and the Lz = 0.1

cases. For the latter cases, a decaying slope around −11/3 is found. These 2-D flow

spectra are steeper than the −3 rate predicted by the classical 2-D turbulence theory

(Kraichnan, 1967) because of the interaction of the coherent large-scale Kármán vor-

tices, in agreement with the finds of Dritschel et al. (2008) and Biancofiore (2014). The

filamentary vorticity (filaments of vorticity around the coherent vortices) is likely to be

destroyed by the interaction of the large-scale vortices rather than viscous effect (spe-

cially for high Re flows), thus limiting its range of scales. The coherent vortices induce

a spiralling effect which limits the range of scales of incoherent filamentary vorticity

(Gilbert, 1988). On the other hand, as a −5/3 decay rate is captured for the Lz = 0.25

case, it can be argued that 3-D turbulence is being generated from the cylinder wall

even for highly reduced spans.

The Lz = 0.25 and Lz = 0.5 cases feature a decay rate that transitions from −5/3 to

−11/3 as the spectra are computed further downstream from the cylinder. In particular,

both cases have−5/3 slopes in Fig. 3.4a and−11/3 in Fig. 3.4c, quantifying the turbulent

two-dimensionalisation in the rotating wake. Also note the coexistence of both 2-D and

3-D turbulence features for the Lz = 0.25, 0.5 and Lz = 1 cases in Fig. 3.4b and Fig. 3.4c

respectively. The low-frequency structures behave mostly two-dimensionally (decay rate

between −3 and −11/3, resulting from the presence of less coherent 2-D structures

than the pure 2-D case) up to a certain point where a −5/3 rate is briefly recovered.

Hence, high-frequency structures interact in a 3-D fashion while low-frequency structures

interact two-dimensionally. This finding is in agreement with Smith et al. (1996) and

Celani et al. (2010).

Additionally, two-point correlations along the span have been analysed at the same (x, y)

locations as the PS plots (Fig. 3.4 d,e,f). Given a distance d along z ranging from 0 to

Lz/2, the two-point correlation is calculated with the temporal signals of the vertical

velocity component at multiple pairs of points (namely v1 and v2) as follows

χ12

(
v1(x, t), v2(x+ r, t)

)
=

cov(v1, v2)√
cov(v1, v1)cov(v2, v2)

, (3.4)

where the distance vector is defined as r = (0, 0, d). The multiple correlation coefficients

for a given d are then averaged corresponding to a data point in the plots.

Very close to the cylinder (Fig. 3.4d), the correlation coefficient quickly decreases with

increasing d for Lz > 0.1. This indicates the presence of 3-D structures near the body

as also noted on the velocity spectrum plot counterpart. Also, the decrease is more

pronounced as the span increases. For Lz = π, it is worth noting a local correlation

coefficient maximum around d ≈ 0.9. This distance approximately corresponds to the

Mode B instability wavelength (λz). Since the rib-like vortices associated with the

Mode B instability (streamwise and crossflow vorticity) are not very well defined at
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Figure 3.4: Left: vertical velocity component temporal PS at different (x, y) locations
on the wake: (a) = (2, 0.8), (b) = (4, 0.8), (c) = (8, 0.8). The PS lines of each case are
shifted a factor of 10 for clarity and the vertical axis ticks correspond to the Lz = π
case. The dashed lines have a −11/3 slope and the dotted lines have a −5/3 slope.
Right: two-point correlations along z at the same (x, y) locations as the left figures
respectively. The correlation value χ12 for a given d corresponds to the averaged value
of the multiple correlations of pairs of points separated a distance d along the span.
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Figure 3.5: TKE spatial plots. The TKE is computed from the normal Reynolds
stresses and averaged on the vertical direction: (a) total TKE, (b) ratio of the spanwise
component w′w′ to the total TKE.

this Re regime (Chyu and Rockwell, 1996), the correlation increase is not as significant

as at lower Re. Still, Lz = π is the only case displaying such phenomena because

of the spanwise boundary conditions periodicity, which only allow the instability to

develop if Lz > λz (the Lz = 1 case might be too critical to display such phenomenon

considering also its intermittent nature). The correlation coefficient increases when

calculated further downstream as shown in Fig. 3.4e and 3.4f, evidencing again the wake

two-dimensionalisation.

In summary, the transition to a 2-D wake is found at a certain point along the wake on

all the cases with Lz ≤ 1. The combination of the large-scale rotation from the Kármán

vortices plus the geometry constriction are mainly responsible for this phenomenon. The

main physical mechanism differing among the compared cases is the ability of the flow

to develop Mode B-like 3-D structures in the wake as a result of a sufficiently long span.

The current Re regime is characterised by a transition to turbulent flow at the shear

layer (i.e. the TrSL2 regime) as reported in Bloor (1964) and Kourta et al. (1987). We

argue that when the span is too short for the Mode B instability to develop and thereby

sustain these 3-D turbulent structures, the stratification effect of the Kármán vortices

leads to the more coherent and energised wake seen in Fig. 3.4 d,e,f.

Next, the TKE along the x direction, the Lumley triangle of turbulence and the ra-

tio between the vortex-stretching and vortex-advecting terms are examined to further

support the observed phenomena. The TKE is defined as

TKE =
1

2

(
u′u′ + v′v′ + w′w′

)
, (3.5)



26 Chapter 3 Span effect on the turbulence nature of flow past a circular cylinder

where · denotes a time average plus a spanwise average and the superscript (·)′ denotes

a fluctuating quantity such as a′ = a − a. The six components of the Reynolds-stress

tensor u′iu
′
j have been computed using the following relation

a′b′ = ab− ab. (3.6)

Fig. 3.5 shows the streamwise spatial distribution of the TKE averaged along the y

direction from −Ly/2 to Ly/2 (noted as ·|y). From a general point of view, it can be

observed that the total TKE (Fig. 3.5a) peaks right after the recirculation region noting

that the latter increases slightly with the span. Also, the total TKE increases as the

span is reduced because of the 2-D vortex-merging processes that generate larger and

more energised vortical structures. The contribution of the spanwise normal stress to

the total TKE increases with the span as shown in Fig. 3.5b. Also, a decay of w′w′ right

after being generated from the cylinder wall can be noted and it becomes faster as the

span is constricted.

The effect of the span on the TKE compared to the lift coefficient root mean square

(r.m.s.) value (CL) displays a quasi-linear relation as shown in Fig. 3.6. Note that the

drop on both values is more sensitive to the span constriction at the range where both

2-D and 3-D turbulence dynamics coexist, i.e. 0.25 ≤ Lz ≤ 1. On the other hand, a very

small change of both values can be appreciated when 3-D turbulence fully dominates the

wake, i.e. Lz ≥ π. Furthermore, as shown in Fig. 3.5a, highly constricted domains yield

large values of TKE because of the energised 2-D large-scale vortical structures present

at the wake. Even when small-scale 3-D structures are present in the close wake region

and coexist with the large 2-D structures, the values of both the TKE and the CL spike.

In Fig. 3.7, the temporal signals of the lift and drag coefficients as well as the upper

and lower separation angles of the free-shear layer are displayed for the Lz = 0.5 and

the Lz = π cases. The oscillation of the separation points increases as the span is

constricted inducing larger forces on the cylinder. A very high correlation of the upper

and lower separation points angle with the lift coefficient is shown as well. Again, the

lack of the Mode B instability on the constricted cases yields more coherent 2-D vortical

structures in the near wake region. Therefore, the small-scale 3-D structures which

normally dissipate most of the kinetic energy in 3-D turbulence are not present leading

to high-intensity vortices. This can be quantified by the enstrophy (Z) of the spanwise-

averaged spanwise vorticity in the near wake region, Ω (x ∈ [0.55, 2.1], y ∈ [−0.8, 0.8]),

which is time averaged for the same temporal length as the body forces signals as follows

Z =

∫
Ω

1

t2 − t1

∫ t2

t1

1

Lz

∫ Lz

0
ω2
z dz dt dΩ. (3.7)

It can be observed in Tab. 3.1 that the enstrophy increases as the span is reduced, which

can be understood as an increase of the rotational energy of the flow.
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Figure 3.6: Effect of the span constriction on the TKE and the CL. The latter is
calculated as CL = |2Fy/(ρU2

∞DLz)|rms, where Fy is the vertical lift force, U∞ is the
free-stream velocity, and ρ is the constant fluid density.

Lz π 1 0.5 0.25 0.1

Z/Zπ 1 1.32 1.71 2.07 2.47

Table 3.1: Near body enstrophy as defined in equation 3.7 for the different span cases.
Zπ is the enstrophy of the Lz = π case.

The highly energised coherent vortices forming at the near wake region for the constricted

cases induce a larger convective force on the free-shear layer. This translates to the large

oscillations observed in Fig. 3.7 and, ultimately, to the forces induced on the cylinder.

With this, it can be argued that the coherent 2-D structures have a greater impact on

the forces induced to the cylinder than the 3-D small-scale structures when both are

present.

Lumley and Newman (1977) proposed the Lumley triangle of turbulence which provides

a way to classify the anisotropic state of turbulence. The anisotropy property of the

Reynolds-stress tensor can be extracted with

bij =
u′iu
′
j

u′ku
′
k

− 1

3
δij , (3.8)

where δij is the Kronecker delta tensor and bij is the anisotropic Reynolds-stress tensor

(which evidently vanishes for isotropic turbulence). This dimensionless and traceless

tensor has two non-zero invariants, II = −bijbji/2 and III = bijbjkbki/3. These in-

variants are often rewritten as η2 = −II/3 and ξ3 = III/2 to better appreciate the

nonlinear behaviour of the trajectories of return to isotropy of homogeneous turbulence
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Figure 3.7: Top: CL and CD temporal signals. The latter is calculated as CD =
2Fx/(ρU

2
∞DLz) and the former as detailed in Fig. 3.6 (without the r.m.s norm). Mid-

dle: upper θu and lower θl separation angles temporal signal. The separation angle is
calculated from the front stagnation point of the cylinder to the free shear layer sepa-
ration point (vorticity practically 0 at the wall). Bottom: correlation between the lift
coefficient and the difference between θu and 360− θl. Left: Lz = π. Right: Lz = 0.5.
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(Choi and Lumley, 2001). It has been shown that all the possible turbulence states are

mapped within the triangle (Lumley and Newman, 1977; Lumley, 1979).

The different states of turbulence are classified in the triangle as follows: the top right

elbow indicates a one-dimensional (or one component) state with a single non-zero eigen-

value (the eigenvalues can be understood in physical terms as the normal stresses in the

principal axes of the anisotropic Reynolds-stress tensor). The top left elbow indicates a

2-D isotropic state where one eigenvalue vanishes and the two remaining are equal. The

top curve connecting the elbows indicates a 2-D turbulence state where one eigenvalue

vanishes and the addition of the two remaining eigenvalues is constant. The left and

right straight lines correspond to a negative or positive (ξ) axisymmetric state since one

eigenvalue is smaller than the other two (which are equal) or greater than the other two

(which are equal) respectively. Finally, the (0, 0) point indicates 3-D isotropic turbulence

since all of the anisotropic tensor eigenvalues vanish.

Fig. 3.8 displays the Lumley triangle constructed across the wake width at different x

locations. Hence, every point in the triangle corresponds to a point in the domain and

the collection of points for each case represents the collection of vertically aligned points

in the domain at different x locations on the wake. It can be appreciated that all of the

points are located within the triangle, therefore all of the computed Reynolds stresses

are realisable (i.e. have positive and real eigenvalues). In general, most of the cases

transition from one state to another state of turbulence across the wake width. Only for

the almost 2-D case (Lz = 0.1), the state of turbulence is always 2-D (or two-component),

since w′w′ is effectively negligible everywhere.

As the triangle is constructed further downstream on the wake, the trajectories (or

collection of points) of the Lz = 0.25 and Lz = 0.5 cases move closer to the 2-D

turbulence state location (upper curve). This emphasises once again the wake two-

dimensionalisation caused by the large-scale vortical structures on cases with critical

span which contain a cross-over of 2-D and 3-D turbulence, as shown in previous results.

In contrast, the Lz = 1 and Lz = π cases remain approximately at the same η region

showing that the two-dimensionalisation is not as effective.

Additionally, the trajectories present a negative axisymmetric almost two-component

state for the locations far from the wake centreline, i.e. the location close to y =

±Ly/2, since one of the normal turbulent stresses (w′w′) is smaller than the others.

On the centreline, v′v′ is larger than the other stresses causing a shift to the positive

axisymmetric state.

A comparison of the different cases at the same x location also shows a more noticeable

2-D turbulence state as the span is constricted. This difference is less noticeable close to

the cylinder (Fig. 3.8a), where even the Lz = 0.5 case trajectory resembles the Lz = π

case. Again, this evidences that 3-D turbulence is present close to the wall even in

considerably constricted cases.
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Figure 3.8: Lumley triangle constructed across the wake width at: (a) x = 2, (b) x = 4,
(c) x = 6, (d) x = 8.

Consider now the vorticity transport equation (VTE) which can be written as

∂tω + (u · ∇)ω = (ω · ∇)u+Re−1∇2ω, (3.9)

where ω (x, t) =
(
ωx, ωy, ωz

)
is the vorticity vector field defined as ω = ∇ × u. The

vortex-stretching term, (ω · ∇)u, is often pointed to as the term responsible for the

direct energy cascade of the TKE. The stretching of a vortex tube causes a reduction on

its diameter while increasing the rotation speed of the vortex by conservation of angular

momentum. This term vanishes in the 2-D formulation of the VTE since the stretch of

the vortex tube is perpendicular to the plane of rotation. From this mathematical and

physical difference, different turbulence dynamics is captured in 2-D or 3-D computations

and, therefore, 3-D turbulence can be directly linked to this term.

Fig. 3.9 displays the modulus of the mean vortex-stretching term and its ratio R to the
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Figure 3.9: (a) Modulus of the mean vortex-stretching term averaged along the vertical
direction. (b) Ratio of the modulus of the mean vortex-stretching term to the modulus
of the mean vortex-advecting term averaged along the vertical direction.

mean vortex-advecting term. These quantities are averaged in the vertical direction. On

Fig. 3.9a, it can be observed that the vortex-stretching term decays faster while moving

downstream from the cylinder for cases with shorter span. The vortex-stretching decay

demonstrates again the two-dimensionalisation of the flow by the large-scale vortices.

The ratio R in Fig. 3.9b shows that the vortex-advecting term decays faster (because

of the wake momentum deficit) than the vortex-stretching term along the streamwise

direction up to x = 6 where the ratio is kept constant. It can also be observed that

the vortex-stretching term becomes as important as the vortex-advecting term with

increasing span.

3.4 Conclusion

The span effect on the turbulence dynamics of a flow past a circular cylinder at Re = 104

has been investigated using spectra and two-point correlations at different locations in

the domain, the TKE along the wake, the separation points, the Lumley triangle of

turbulence and the mean vortex-stretching term of the VTE. It has been shown that

3-D turbulence is present even for highly constricted cases (for example Lz = 0.25)

which is generated by the cylinder wall (Fig. 3.4a). However, the small-scale structures

rapidly get two-dimensionalised by the large-scale Kármán vortices when the span is

50% of the diameter or less. This is linked to the Mode B instability wavelength being

longer than the periodic span, in agreement with Bao et al. (2016). Since the Mode B

instability helps sustaining the turbulent structures advected from the shear layer, the

lack of it prevents large-scale 3-D structures to be created and less dissipative structures

can be sustained. In this scenario, 2-D turbulence takes over and dominates the wake
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dynamics creating larger, stronger and more coherent vortices. Ultimately, the coherent

and energised vortical structures induce a larger convective force on the free-shear layer.

This translates to larger oscillations and, finally, higher forces on the cylinder.

The flow turbulence transition from 3-D to 2-D caused by a geometry constriction found

in this work is in agreement with the physical mechanisms described in the obstacle-free

turbulence work of Smith et al. (1996), Celani et al. (2010) and Biancofiore (2014). In

the present study with solid boundaries, the main difference is found in the presence of

small-scale 3-D turbulence even in highly constricted geometries (Lz = 0.25) which leads

to a coexistence of 2-D and 3-D turbulence close to the cylinder wall. This is observed

not only in the Lz = 0.25 case, but also for the Lz = 0.5 and Lz = 1 cases as shown

in Fig. 3.4b and Fig. 3.4c respectively. Note that the cross-over between 2-D and 3-D

turbulence dynamics arises at different points in the spatial domain depending on the

span length. The shorter the span, the closer to the cylinder it takes place evidencing

that the wake two-dimensionalisation transitions at different locations in function of the

domain geometric anisotropy.

On the other hand, a very rapid two-dimensionalisation is found in the present cases

because of the natural large-scale rotation motion of the Kármán vortices. A large-scale

rotation as a mechanism of two-dimensionalisation has been also found in other works

such as Smith et al. (1996) and Xia et al. (2011). These two mechanisms combined yield

to a rapid transition from the 3-D to 2-D turbulence dynamics when the span is shorter

than the Mode B instability wavelength of the wake.



Chapter 4

The spanwise-averaged

Navier–Stokes equations

Simulations of turbulent fluid flow around long cylindrical structures are computation-

ally expensive because of the vast range of length scales, requiring simplifications such

as dimensional reduction. Current dimensionality reduction techniques such as strip-

theory and depth-averaged methods do not take into account the natural flow dissipation

mechanism inherent in the small-scale 3-D vortical structures. In this chapter, a novel

flow decomposition based on a local spanwise average of the flow is proposed, yielding

the spanwise-averaged Navier–Stokes (SANS) equations. The SANS equations include

closure terms accounting for the 3-D effects otherwise not considered in 2-D formula-

tions. The SSR tensor modifies the flow dynamics from standard 2-D Navier–Stokes

to spanwise-averaged dynamics. It is shown that the SANS perfect closure recovers the

unsteady spanwise-averaged solution of the Taylor–Green vortex and flow past a circular

cylinder at Re = 104. Finally, it is demonstrated that eddy-viscosity models (EVMs) are

not suited for the prediction of the spanwise stresses, motivating the need of a different

closure as proposed in the following chapter.

4.1 Introduction and literature review

The vast range of spatial and temporal scales inherent in turbulence renders direct

numerical simulations of most engineering and environmental flows impossible. This is

because the required resolution is governed by the balance of the flow convective and vis-

cous forces, quantified by the Reynolds number. For illustration, turbulent engineering

or atmospheric flows have Re & 106 − 1010 and, as reviewed in § 1.1.1, directly simu-

lating homogeneous isotropic turbulence in an L3 box for one convection cycle would

require O(Re3) operations (Coleman and Sandberg, 2010; Pope, 2000, p. 346). To avoid

33
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resolving the smallest time and length scales, turbulence models such as RANS, LES,

and others have been developed to account for the unresolved scales of motion on coarse

discretisations.

However, in many cases the scale of the flow is so large that turbulence models do

not sufficiently reduce the computational cost and further simplifications are required,

such as reducing the flow from three spatial dimensions down to two. In the case

of very long slender bodies, strip theory can be used to place 2-D strips along the

structure span, reducing cost by orders of magnitude. In offshore engineering, strip-

theory methods have been used to simulate the vortex-induced vibrations of marine

risers (Herfjord et al., 1999). Willden and Graham (2001) considered a marine riser

at a low Reynolds regime where the strips were linked by an inviscid unsteady 3-D

vortex lattice. Further investigations on marine risers multi-modal VIV phenomena

were performed by the previous authors considering a more realistic Reynolds number

(O(105)) and including a LES turbulence model for the 2-D strips (Willden and Graham,

2004). Other authors such as Yamamoto et al. (2004); Meneghini et al. (2004); Sun et al.

(2012) employed a strip-theory discrete-vortex method to study the VIV phenomena on

marine risers with Lz/D = 400 and Re = 105, modelling the flow viscous effects through

an exponentially decaying function. Other slender-body problems tackled with strip

theory are found in naval engineering to simulate ship hydrodynamics (Newman, 1979),

or in aerospace engineering for wing fluttering prediction (Yates, 1966). A different

dimensionality reduction technique is the depth-averaged method, typically used in the

simulation of shallow open-channel flow such as rivers (Molls and Chaudhry, 1995),

where the dimensions of the problem are simplified by averaging along the shear direction

of the flow.

The main shortcoming of the dimensionality reduction methods above is that the fluid

dynamics of 2-D systems are intrinsically different from their 3-D counterparts. In partic-

ular, 3-D turbulence cannot develop when the spanwise dimension is neglected. Instead,

2-D turbulence promotes coherent and high-intensity vortices via vortex-thinning and

vortex-merging events (Xiao et al., 2009) ultimately inducing larger forces to the cylinder

(Mittal and Balachandar, 1995; Norberg, 2003). Because of this, these methods require

additional dissipation mechanisms, often in the form of LES Smagorinsky models. These

turbulence models applied to 2-D systems decrease the vortices intensity thus inducing

weaker forces on solid structures which can resemble those found in 3-D cases. However,

the dissipation mechanism is arbitrary and we show that it cannot be used to simulate

3-D turbulence dynamics in a 2-D simulation.

To address this issue, Bao et al. (Bao et al., 2016, 2019) proposed a thick strip-theory

method, as hinted in Herfjord et al. (1999). Providing spanwise thickness to the strips

allows the flow to locally develop 3-D turbulence, thus recovering the natural dissipation

mechanism. However, the minimum strip thickness at which 3-D turbulence dominates

the flow is in the order of the structure diameter (Bao et al., 2016; Font et al., 2019),
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Figure 4.1: Sketch of the spanwise-averaged strip-theory method. The original Lz
span is decomposed into multiple La spanwise segments for which the SANS equations
are simultaneously solved, hence reducing the computational domain (coloured region).
Solving the SANS equations for every spanwise-averaged strip allows to recover the
local integrated forces induced to the cylinder. The 2-D strips can be linked with a
structural dynamic model similarly to Bao et al. (2016, 2019).

as discussed in Chapter 3. Hence, the inclusion of 3-D effects comes at the expense

of increased computational cost, which can limit the simulation of realistic spans or

Reynolds regimes.

In this work, we propose a novel flow decomposition which separates the spanwise-

averaged and the spanwise-fluctuating parts of the flow. Instead of directly resolving the

3-D spatial scales, these are taken into account with an additional spanwise-fluctuating

term inserted into the 2-D governing equations. We call the resulting system of equa-

tions the spanwise-averaged Navier–Stokes equations (SANS). In contrast to RANS or

LES, the closure terms account for the 3-D turbulence effects enabling the simulation of

turbulent wake flows in two dimensions. Similarities can be drawn with depth-averaged

methods. Uniquely, the SANS equations do not assume hydrostatic pressure or ap-

proximately uniform velocity, instead being developed specifically to deal with fully

3-D wake turbulence. Unlike RANS simulations, which can only (at best) reproduce

the time-averaged forces, the SANS system is capable of reproducing the instantaneous

spanwise-integrated forces on a locally cylindrical body. As such, a SANS strip the-

ory is ideal for predicting the 3-D fluid-structure interactions with widely spaced 2-D

simulation planes (see Fig. 4.1).

4.2 The spanwise-averaged Navier–Stokes equations

When a flow is essentially homogeneous in one direction, this can be exploited to simplify

modelling in a number of ways; the turbulent flow statistics are invariant to translation

along the homogeneous direction, there are no mean flow gradients in the homogeneous

direction, and the component of mean velocity in the homogeneous direction can always

be set 0 in an appropriate reference frame (Pope, 2000, p. 76). Therefore, a single

homogeneous direction can be used to reduce a 3-D flow to a 2-D system of equations,

potentially reducing the cost of simulation by orders of magnitude.
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4.2.1 Mathematical description

Starting from the conservation form of the non-dimensional 3-D Navier–Stokes momen-

tum equations

∂tu+∇ · (u⊗ u) = −∇p+Re−1∇2u, (4.1)

the velocity vector field u (x, t) = (u, v, w) and the pressure scalar field p (x, t) are

decomposed into a spanwise-averaged and a spanwise-fluctuating part as follows

q(x, t) = 〈q〉 (x, y, t) + q ′(x, y, z, t), (4.2)

where 〈·〉 and (·) ′ denote the averaged and the fluctuating parts of the decomposition,

respectively. The average, also noted as 〈q〉 = Q, can be defined on a z ∈ [a, b] interval

as

Q = 〈q〉 (x, y, t) =
1

b− a

∫ b

a
q (x, y, z, t) dz. (4.3)

Such decomposition applied to the ex component of Eq. 4.1 yields

∂t (U + u ′) + ∂x (UU + 2Uu ′+ u ′u ′) + ∂y (V U + V u ′+ v ′U + v ′u ′) +

+∂z (WU +Wu ′+ w ′U + w ′u ′) =

= −∂x (P + p ′) +Re−1
[
∂xx (U + u ′) + ∂yy (U + u ′) + ∂zz (U + u ′)

]
. (4.4)

Next, the following relations arising from Eq. 4.3 are considered,

q = Q+ q ′, s = S + s ′, 〈q + s〉 = Q+ S, (4.5)

〈Q〉 = Q, 〈q ′〉 = 0, 〈Qs ′〉 = Q 〈s ′〉 = 0, (4.6)

〈q ′q ′〉 6= 0, 〈∂zq〉 6= ∂zQ, ∂zQ = 0, (4.7)

〈∂tq〉 = ∂tQ, 〈∂xq〉 = ∂xQ,
〈
∂yq
〉

= ∂yQ. (4.8)

Note that the spanwise average does not commute with the spanwise derivative, i.e.

〈∂zq〉 = 〈∂zq ′〉 6= ∂zQ, since the average and the derivative operate over the same vari-

able z. However, terms such as 〈∂nz q〉 vanish under infinitely-long (periodic) averaging

intervals, as discussed in § 4.4.

Applying the averaging operator to the whole Eq. 4.4 and considering the relations from

Eq. 4.5 to Eq. 4.5 yields the governing equation of U ,

∂tU + ∂x
(
UU + 〈u ′u ′〉

)
+ ∂y

(
V U + 〈v ′u ′〉

)
+
〈
∂z (Wu ′+ w ′U + w ′u ′)

〉
=

= −∂xP +Re−1
(
∂xxU + ∂yyU + 〈∂zzu ′〉

)
, (4.9)

∂tU + ∂x (UU) + ∂y (V U) + U 〈∂zw ′〉 = −∂xP +Re−1
(
∂xxU + ∂yyU

)
−

−∂x 〈u ′u ′〉 − ∂y 〈v ′u ′〉 −W 〈∂zu ′〉 −
〈
∂z (w ′u ′)

〉
+Re−1 〈∂zzu ′〉 . (4.10)
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In order to rewrite Eq. 4.10 in its non-conservation form, the continuity equation is

considered

∇ · u = 0, (4.11)

and applying the same decomposing and averaging procedure yields

∂xU + ∂yV + 〈∂zw ′〉 = 0. (4.12)

By substituting Eq. 4.12 into Eq. 4.10, the non-conservation form is obtained and the

U 〈∂zw ′〉 term vanishes yielding

∂tU + U∂xU + V ∂yU = −∂xP +Re−1
(
∂xxU + ∂yyU

)
− ∂x 〈u ′u ′〉 − ∂y 〈v ′u ′〉−

−W 〈∂zu ′〉 −
〈
∂z (w ′u ′)

〉
+Re−1 〈∂zzu ′〉 . (4.13)

Analogously to the spanwise decomposition for the ex component of the momentum

equations, the same procedure can be applied to the ey and ez components which

respectively leads to

∂tV + U∂xV + V ∂yV = −∂yP +Re−1
(
∂xxV + ∂yyV

)
− ∂x 〈u ′v ′〉 − ∂y 〈v ′v ′〉−

−W 〈∂zv ′〉 −
〈
∂z (w ′v ′)

〉
+Re−1 〈∂zzv ′〉 , (4.14)

∂tW + U∂xW + V ∂yW = −〈∂zp ′〉+Re−1
(
∂xxW + ∂yyW

)
− ∂x 〈u ′w ′〉 − ∂y 〈v ′w ′〉−

−W 〈∂zw ′〉 −
〈
∂z (w ′w ′)

〉
+Re−1 〈∂zzw ′〉 . (4.15)

Note that Eqs. 4.13 to 4.15 are the 2-D incompressible Navier–Stokes equations with ad-

ditional spanwise-fluctuating closure terms (first line, also referred in future mentions as

“spanwise stresses”) and terms arising from the finite spanwise-averaging length (second

line).

With this, the complete 2-D SANS momentum equations can be written in a more

compact form as

∂tU +U · ∇U = −∇P +Re−1∇2U −∇ · τRij−
−W 〈∂zu ′〉 −

〈
∂z (w ′u ′)

〉
+Re−1 〈∂zzu ′〉 , (4.16)

where U = (U, V ), and the spanwise-stress residual (SSR) tensor τRij is defined as

τRij = 〈u⊗ u〉 − 〈u〉 ⊗ 〈u〉 =

〈u ′u ′〉 〈u ′v ′〉
〈u ′v ′〉 〈v ′v ′〉

 . (4.17)

For the sake of completeness, the analogous spanwise-averaged VTE derivation is in-

cluded in Appendix C.1, where the relation between the velocity-velocity and vorticity-

velocity spanwise stresses is derived as well.



38 Chapter 4 The spanwise-averaged Navier–Stokes equations

4.3 Columnar vortex between two infinite parallel plates

The SANS equations dynamics is explored for an analytical test case where a known

solution exists. For this, a columnar vortex between two infinite parallel plates is con-

sidered (Marshall, 2001). Marshall’s analytical test case shows the stretching of a vortex

tube by the superposition of an external straining field (Fig. 4.2).

In a cylindrical coordinate system, we consider unit vectors er, eθ, ez and define the

vector fields u = (ur, uθ, uz) , ω = (ωr, ωθ, ωz) in a x = (r, θ, z) cylindrical space. In this

coordinate system, a columnar vortex is defined as

ωv (x, t) =

 ω (t) e3

0

r ≤ R (t) ,

r > R (t) ,
(4.18)

where uniform vorticity within the vortex core is considered for the e3 direction. Also

note that the subscript (·)v refers to the columnar vortex field. The velocity field asso-

ciated to the columnar vortex is

uv (x, t) =
(
0, v (r, t) , 0

)
. (4.19)

Next, we demonstrate that the superposition of an axisymmetric straining field to the

vortex tube increases the vorticity magnitude (for incompressible flow) as a result of the

vortex-stretching mechanism. Let us consider the following straining field

us =

(
−γr

2
, 0, γz

)
, (4.20)

where γ is the rate of strain (dL/dt = γL0), and the subscript (·)s refers to the straining

field. Note that the straining field is irrotational, ∇× us = 0, so no vorticity is added.

With this, the superposition of the columnar vortex and the straining field results into

the following vorticity and velocity fields, respectively

ω = ωv =
(
0, 0, ω(t)

)
(4.21)

u = uv + us =

(
−γr

2
, v(r, t), γz

)
. (4.22)

Substituting Eq. 4.21 and Eq. 4.22 into the e3 component of the non-dimensional VTE,

written in cylindrical coordinates as

∂ωz
∂t

+ ur
∂ωz
∂r

+
uθ
r

∂ωz
∂θ

+ uz
∂ωz
∂z

= ωr
∂uz
∂r

+
ωθ
r

∂uz
∂θ

+ ωz
∂uz
∂z

+

+
1

Re

(
∂2ωz
∂r2

+
1

r

∂ωz
∂r

+
1

r2

∂2ωz
∂θ2

+
∂2ωz
∂z2

)
, (4.23)



Chapter 4 The spanwise-averaged Navier–Stokes equations 39

Figure 4.2: Columnar vortex of radius R between two infinite parallel plates. Adapted
from Marshall (2001).

yields

∂ω

∂t
+ 0 + 0 + 0 = 0 + 0 + ω

∂

∂z
(γz) + 0 + ...+ 0, (4.24)

dω

dt
= γω. (4.25)

Therefore, it is shown that an increase in the straining field (γ > 0) induces an increase of

the vorticity magnitude (vortex-stretching), and a decrease in the straining field (γ < 0)

induces a decrease of the vorticity magnitude (vortex-compression). Also note that the

γω term arises from ωz
(
∂uz/∂z

)
, indeed part of the vortex-stretching term.

Next, the Marshall’s vortex stretching analytical test case is considered using the spanwise-

averaged VTE. In cylindrical coordinates, the non-dimensional spanwise-averaged VTE

can be written as (see derivation in § C.1.1)

∂Ωz

∂t
+ Ur

∂Ωz

∂r
+
Uθ
r

∂Ωz

∂θ
= Ωr

∂Uz
∂r

+
Ωθ

r

∂Uz
∂θ

+
1

Re

(
∂2Ωz

∂r2
+

1

r

∂Ωz

∂r
+

1

r2

∂2Ωz

∂θ2

)

−1

r

[
∂

∂r

(
〈rur ′ωz ′〉 − 〈rωr ′uz ′〉

)
+

∂

∂θ

(
〈uθ ′ωz ′〉 − 〈ωθ ′uz ′〉

)]
+

+Ωz

〈
∂uz

′

∂z

〉
− Uz

〈
∂ωz

′

∂z

〉
+

1

Re

〈
∂2ωz

′

∂z2

〉
. (4.26)
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Applying the averaging procedure to the velocity field resulting from the superposition

of the columnar vortex and the straining field (Eq. 4.22) yields

u =

(
−γr

2
, 0, γz

)
, (4.27)

Ur =
1

b− a

∫ b

a
−γr

2
dz = −γr

2
, ur

′ = 0, (4.28)

Uz =
1

b− a

∫ b

a
γz dz = γ

a+ b

2
, uz

′ = uz − Uz = γ

(
z − a+ b

2

)
, (4.29)

U =

(
−γr

2
, 0, γ

a+ b

2

)
, (4.30)

while the vorticity field stays as Ω =
(
0, 0, ω(t)

)
. Substituting the averaged and fluctu-

ating parts of the velocity and the vorticity fields into Eq. 4.26 yields

∂ω

∂t
+ 0 + 0 = 0 + 0 + ...+ ω

∂

∂z
(γz) + 0 + ...+ 0, (4.31)

dω

dt
= γω. (4.32)

This shows that the vortex-stretching mechanism is still present in the spanwise-averaged

VTE. However, note that γω arises from Ωz 〈∂zuz ′〉, a term that vanishes when an infinite

(spanwise-periodic) averaging interval is considered, as explained next.

4.4 Averaging over a spanwise-periodic interval

The SANS equations can be greatly simplified when the averaging is performed over a

periodic interval since

〈∂zq〉 = 〈∂zq ′〉 =
1

b− a

∫ b

a

∂q ′

∂z
dz =

q ′ (b)− q ′ (a)

b− a = 0 (4.33)

because q ′(a) = q ′(b). This yields a simplified version of SANS which can be written as

∂tU + U∂xU + V ∂yU = −∂xP +Re−1
(
∂xxU + ∂yyU

)
− ∂x 〈u ′u ′〉 − ∂y 〈v ′u ′〉 , (4.34)

∂tV + U∂xV + V ∂yV = −∂yP +Re−1
(
∂xxV + ∂yyV

)
− ∂x 〈u ′v ′〉 − ∂y 〈v ′v ′〉 , (4.35)

∂tW + U∂xW + V ∂yW = Re−1
(
∂xxW + ∂yyW

)
− ∂x 〈u ′w ′〉 − ∂y 〈v ′w ′〉 . (4.36)

Note that the spatial dependency on the spanwise direction is lost during the process

(there are no z derivatives present in the final form), and also the momentum equa-

tions for U and V are decoupled from W . The momentum equation for W becomes

a convective-diffusive equation (with additional forcing terms) since the pressure term

vanishes under the assumption of spanwise periodicity. In a more compact form and
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dropping the ez momentum equation, the simplified SANS equations are written as

∂tU +U · ∇U = −∇P +Re−1∇2U −∇ · τRij . (4.37)

Under this assumption, the vortex-stretching term appearing in Eq. 4.26 vanishes and

the SANS equations would fail to capture the previous analytical test case mechanism.

On the other hand, the SANS equations are still valid in a z-periodic domain, and

the only difference with a standard 2-D Navier–Stokes system resides in the SSR term,

∇ · τRij . From here, the concept “SANS” assumes spanwise periodicity and refers to the

simplified SANS equations (Eq. 4.37).

4.5 Closure methods

The challenging part of the SANS equations resides in the closure term which drives the

fluid dynamics from its natural 2-D evolution to a 3-D-like state. The importance of

the SSR term is illustrated using a fully turbulent 3-D Taylor–Green vortex flow. The

Taylor–Green vortex (Taylor and Green, 1937) is broadly used in the computational fluid

dynamics literature for the validation of numerical methods and turbulence models. It

consists of an energy decaying flow defined in a triple periodic box (L × L × L) with

initial flow field u0

u0(x, y, z) = U0 sin(κx) cos(κy) cos(κz),

v0(x, y, z) = −U0 cos(κx) sin(κy) cos(κz),

w0(x, y, z) = 0, (4.38)

where κ = 2π/L, and we select L = 2π and U0 = 1. The initial flow field (Fig. 4.3)

breaks down into smaller structures because of the vortex-stretching mechanism, yielding

a phase of global enstrophy growth. Once most of the large-scale structure have been

destroyed, the inertial subrange and the dissipative structures cannot be sustained, which

leads to an enstrophy decay because of viscous effects.

Fig. 4.4 displays how the spanwise-averaged Taylor–Green vortex evolution, governed

by the SANS equations, is completely different from the purely 2-D or 3-D turbulence

dynamics. The inclusion of the spanwise stresses (which can be computed in a 3-D

simulation) into the 2-D Navier–Stokes solver allows to directly simulate spanwise-

averaged dynamics, as demonstrated in § 4.5.1. Mathematically, the kinetic energy(
E = 1/2

∫
u2 dΩ

)
and enstrophy

(
Z = 1/2

∫
ω2 dΩ

)
of 2-D incompressible flows are

invariant in the absence of viscosity (Kraichnan, 1967), i.e. DE/Dt = DZ/Dt = 0.

This is different in a 3-D system, where the vortex-stretching term (ω · ∇u) transfers

energy from large scales to small scales of motion inducing local changes in the vorticity

field. In this scenario, enstrophy is no longer conserved and kinetic energy together with
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Figure 4.3: Taylor–Green vortex initial ωz vorticity field at z = π/4.

helicity
(
H = 1/2

∫
u · ω dΩ

)
are the non-zero quadratic invariants. Similarly to the

vortex-stretching mechanism in 3-D flows, the inclusion of spanwise stresses into the 2-

D equations locally adds or removes rotational energy into the system; hence enstrophy

and kinetic energy are no longer invariant in the absence of viscosity.

4.5.1 Perfect closure

The SANS equations are numerically verified by including the perfect closure of the

spanwise stresses in a 2-D simulation. The perfect closure (SR) is defined as the differ-

ence between the 2-D Navier–Stokes spatial operator S̃ and the spanwise-averaged 3-D

Navier–Stokes spatial operator 〈S〉. The inclusion of the perfect closure into the 2-D

system allows to calculate the unsteady spanwise-averaged solution of the flow at every

time step. It can be written as

SR (u ′) ≡ S̃ − 〈S〉 , (4.39)

where

S (u, p) = u · ∇u+∇p− ν∇2u, u = (u, v, w) , x = (x, y, z) , (4.40)

S̃ (U , P ) = U · ∇U +∇P − ν∇2U , U = (U, V ) , x = (x, y) . (4.41)

With the previous definitions, the ∇ · τRij closure term in Eq. 4.37 is redefined as the

residual between the operators

∂tU + S̃ = S̃ − 〈S〉 ≡ SR (u ′) , (4.42)

∂tU + S̃ = SR. (4.43)
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Figure 4.4: Spanwise vorticity evolution of the Taylor–Green vortex at Re = 1600 in
a 2π periodic box. From top to bottom: t∗ = 4, 6, 8, 10. Left: 3-D slice at z = π/4.
Middle: 3-D spanwise-averaged. Right: 2-D started from the 3-D spanwise-averaged
snapshot at t∗ = 4, where transition to turbulence is expected in the 3-D system.
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Note that, differently from∇·τRij , the SR residual term includes the spatial discretisation

error of the resolved spanwise-averaged quantities since S̃ cancels out in Eq. 4.42 (see

Beck et al. (2019) for an analogous explanation for LES closure terms). Hence, the

perfect spanwise-averaged solution can be recovered from the original definition of the

SANS equations, i.e. 〈∂tu+ S〉 = 0.

Beyond the spatial discretisation error inherent in ∇ · τRij , the quadrature error itself

could also affect the perfect recovery of the spanwise-averaged solution. In this sense, we

show in Appendix C.2.2 that the quadrature error for the full SANS equations (Eq. 4.16)

cancels out for the initial state of the Taylor–Green vortex case. On the other hand, Ap-

pendix C.2.3 shows that the quadrature error balance is broken when assuming spanwise

periodicity simplifications (Eq. 4.37). Still, the midpoint and trapezoidal quadratures,

normally converging with O(h2), can achieve exponential convergence rates for periodic

functions (Weideman, 2002; Trefethen and Weideman, 2014). Hence, the quadrature

error should not have a practical impact given it decays faster than the discretisation

error of the governing equations.

Taylor–Green vortex

The Taylor–Green vortex flow is used to validate and verify the perfect closure of the

SANS equations by computing the closure terms in a 3-D simulation, where their exact

solution is known, and then adding them in the 2-D solver at every time step. We

select a uniform resolution of 128 cells in all directions and set Re = 1600, noting that

the purpose of this exercise is to validate the correct derivation of the SANS equations

rather than fully resolving the temporal and spatial scales of the problem. The global

kinetic energy and enstrophy are recorded for the spanwise-averaged 3-D, SANS, and

2-D systems, as displayed in Fig. 4.5. The SANS and 2-D simulations are started from a

spanwise-averaged snapshot of the 3-D system at t∗ = 4, where t∗ = tκU0. The evolution

of the perfect closure matches the spanwise-averaged 3-D case to machine accuracy. It

can also be observed that energy and enstrophy are not conserved. Again, this is due to

the inclusion of the perfect closure term (SR), which changes the system dynamics from

standard 2-D Navier–Stokes to SANS. On the contrary, the 2-D case almost conserves

energy and enstrophy, and the decrease of the metrics is due to viscous and numerical

effects.

Flow past a circular cylinder

Similarly to the Taylor–Green vortex case, the SANS equations are validated with the

perfect closure for flow past a circular cylinder at Re = 104. We employ the same case

set-up as § 3.2 using a fixed cylinder of Lz = 1 (span non-dimensionalised with the

cylinder diameter).
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Figure 4.5: Kinetic energy (E, left) and enstrophy (Z, right) of the Taylor–Green
vortex case. E0 and Z0 correspond to the energy and enstrophy at t∗ = 4. Energy
is computed as E = 1/(2Ω)

∫
U2 dΩ. Enstrophy is computed as Z = 1/(2Ω)

∫
Ω2
z dΩ,

where Ωz = ∇×U .
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Figure 4.6: Kinetic energy (left) and enstrophy (right) evolution of flow past a circular
cylinder at Re = 104. E0 and Z0 correspond to the energy and enstrophy at t∗0. Energy
and enstrophy are computed as detailed in Fig. 4.5 caption.

Starting from a spanwise-averaged 3-D snapshot, the inclusion of the perfect closure in

the 2-D solver at every time step allows to recover the unsteady spanwise-averaged flow.

Quantitatively, the difference between the SANS and the 2-D dynamics is emphasised

in the kinetic energy and enstrophy evolution (Fig. 4.6), and the forces induced to the

cylinder (Fig. 4.7). In the 2-D system, both kinetic energy and enstrophy rapidly increase

as a result of its natural 2-D system attractor. On the other hand, the spanwise-averaged

dynamics dictate the evolution of the flow when the perfect closure is inserted into the

2-D solution.

Qualitatively, it can be observed in Fig. 4.8 that a rapid two-dimensionalisation of the



46 Chapter 4 The spanwise-averaged Navier–Stokes equations

0 2 4 6 8 10
∆t∗

−2

−1

0

1

2

CL

CD

〈3-D〉
SANS: 2-D + SR
2-D

Figure 4.7: Lift (bottom) and drag (top) force coefficients of flow past a circular cylinder
at Re = 104. The force coefficients in the 3-D system have been calculated as CL,D =
2Fy,x/(ρU

2
∞DLz), where Fy and Fx are respectively the vertical and horizontal pressure

force, ρ is the constant density, U∞ is the free-stream velocity, and D is the cylinder
diameter. The force coefficients in the 2-D system are calculated analogously without
factoring by 1/Lz.

wake develops when the perfect closure is not included in the 2-D solver. In this scenario,

vortical structures are highly coherent after just two convective time units (i.e. ∆t∗ =

t∗ − t∗0 = 2, where t∗ = tU/D). This is reflected in the over-prediction of the forces

induced to the cylinder as a result of the two-dimensionalisation mechanism yielding

energised vortices in the near wake region.

The over-prediction of the hydrodynamic forces is the main short-coming of standard 2-D

strip-theory methods, which arbitrarily include additional dissipation mechanisms such

as 2-D turbulence models to tackle this issue. Here we show that correctly modelling the

SSR terms can bypass this problem by explicitly including 3-D effects into the governing

equations while keeping the low computational cost of 2-D strip-theory methods.

4.5.2 Eddy-viscosity model

The most common model for the closure terms arising from time-averaged (RANS) or

spatially-filtered (LES) Navier–Stokes equations is based on the eddy-viscosity (Boussi-

nesq) hypothesis. Under this hypothesis, it is assumed that the unresolved scales of

motion can be linked to an effective (positive scalar) viscosity additional to the molecu-

lar viscosity of the fluid. This implies that the closure terms can only have a dissipative

effect in the governing equations. Analogous to the definition of the stress tensor for

Newtonian fluids, the eddy-viscosity hypothesis is defined as

τ rij ≡ 〈u ′⊗ u ′〉 −
2

3
kδij = −2νt

〈
Sij
〉
, (4.44)
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(a) 〈3-D〉, t∗0.

(b) SANS: 2-D + SR, ∆t∗ = 2.

(c) 2-D, ∆t∗ = 2.

Figure 4.8: Top: Vorticity of the spanwise-averaged 3-D flow used as initial condition
for the SANS and the 2-D simulations. Middle: Vorticity obtained in the SANS system
after 2 convective time units. Bottom: Vorticity obtained in the 2-D system after 2
convective time units.

where τ rij is the anisotropic SSR tensor,
〈
Sij
〉

= (∇⊗〈u〉+ 〈u〉⊗∇)/2 is the mean rate-

of-strain tensor, νt is the eddy viscosity, k = tr 〈u ′⊗ u ′〉 /2 is the turbulence kinetic

energy, and δij is the Kronecker delta tensor. The following relations arise for 2-D

incompressible flow

〈u ′u ′〉 − 2k/3 = −2νt∂xU, (4.45)

〈v ′v ′〉 − 2k/3 = −2νt∂yV, (4.46)

〈u ′v ′〉 = −νt
(
∂yU + ∂xV

)
. (4.47)

The eddy-viscosity field in Eq. 4.44 has been a subject of research for decades and many

different eddy-viscosity models (EVMs) have been developed for RANS and LES flow

descriptions. One of the most successful is the LES Smagorinsky model (Smagorinsky,



48 Chapter 4 The spanwise-averaged Navier–Stokes equations

1963)

νt = (Cs∆)2
√

2
〈
Sij
〉 〈
Sij
〉
, (4.48)

where ∆ is the averaging filter width, and Cs is the Smagorinsky constant which tunes

the amount of SGS kinetic energy to be removed.

A-priori results

To test the applicability of EVMs for SANS flow, we apply the Smagorinsky model

to the circular cylinder flow field, manually selecting the value of Cs to provide the

best magnitude fit with the anisotropic part of the residual tensor. As this a-priori

assessment assumes knowledge of the best Cs and does not require any modelling of

the isotropic part of the stress tensor (i.e. the SSR kinetic energy, k), it represents

the best possible results for the EVM1. In the context of this work and as often found

in the literature, a-priori analysis refers to the analysis of the model performed before

deploying it in a live simulation. Such analysis uses reference data previously generated

with the full system of equations, i.e. the 3-D Navier–Stokes equations. On the other

hand, a-posteriori analysis refers to the deployment of the trained model in a live 2-D

simulation, where metrics such as the unsteady hydrodynamic forces can be used as a

performance indicator of the model.

The a-priori correlation of the EVM as defined by the Boussinesq hypothesis (Eqs. 4.45

to 4.47) is displayed in Fig. 4.9 in terms of density plots, where the eddy-viscosity field is

not accounted yet. The observed density distributions hint that a closure based on the

eddy-viscosity hypothesis will most likely fail to correctly capture the SSR anisotropic

tensor components. This arises from the fact that no eddy-viscosity field (scalar) will

be able map the resolved quantities to the different components of the closure tensor,

as the density plot is significantly different between normal and shear components.

The a-priori results of the EVM with the Smagorinsky closure are shown in Fig. 4.10.

Almost no qualitative similarity with the target components of the SSR anisotropic

tensor can be observed, thus evidencing the poor performance of the EVM on capturing

the spanwise fluctuations. This poor performance is quantified in Tab. 4.1 using the

Pearson correlation coefficient

CC
(
τ rij , τ

r,EVM
ij

)
=

cov
(
τ rij , τ

r,EVM
ij

)
√

cov
(
τ rij , τ

r
ij

)
cov

(
τ r,EVM
ij , τ r,EVM

ij

) , (4.49)

1In an a-posteriori framework, turbulence modelling requires the full residual stress tensor to solve
the averaged governing equations. Hence, EVMs usually incorporate the isotropic part

(
2k/3

)
in the

total pressure defining a new pressure field, p∗ = p + 2k/3, on which a divergence-free velocity field is
projected. Alternatively, a transport equation for the TKE can also be considered.
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Figure 4.9: Density plots of the Boussinesq relationship between resolved and fluctuat-
ing quantities computed within the x ∈ [0, 12], y ∈ [−2, 2] domain of the cylinder wake.

Table 4.1: Correlation coefficients between components of the target anisotropic SSR
tensor and predictions provided by the EVM.

CC τ r11 τ r12 τ r22

EVM 0.06 0.06 0.14

The correlation coefficients are calculated for 500 snapshots and the average values are provided.

where the superscript (·)EVM denotes the EVM prediction. The low correlation values

provide clear evidence that the EVM is not suited for the prediction of the spanwise

stresses.

These poor results are ultimately expected since EVMs only account for the dissipative

effects of turbulent fluctuations. In the spanwise-averaged system, the spanwise stresses

can have both a dissipative and energising physical effect, and this is a fundamental

difference which no EVM can reproduce.
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(a) τ r11

(b) τ r,EVM
11

(c) τ r12

(d) τ r,EVM
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(e) τ r22

(f) τ r,EVM
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Figure 4.10: EVM predictions of the anisotropic SSR tensor components (τ r,EVM
ij )

compared to reference data (τ rij).
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4.6 Conclusion

A flow decomposition based on the local spanwise average has been proposed aiming to

reduce the system dimensionality of flows presenting an homogeneous direction. The

SANS equations yield the spanwise-averaged solution of a 3-D flow in a 2-D system. In

practical terms, the SANS equations are equivalent to the incompressible 2-D Navier–

Stokes equations with additional forcing terms representing the spanwise fluctuating

part of the flow.

First, we examine the SANS equations in an analytical test case consisting in the su-

perposition of a vortex tube and a straining field. It is demonstrated that the SANS

equations still include the vortex-stretching mechanism. On the other hand, the SANS

equations are greatly simplified when the flow is assumed to be spanwise periodic. The

vortex-stretching term plus other terms arising from averaging over a finite non-periodic

interval vanish as a result of this constraint.

In spanwise-periodic conditions, the SANS equations only contain the divergence of the

SSR tensor as a closure term. In this sense, the perfect closure is presented as the

difference between the 2-D Navier–Stokes spatial operator and the spanwise-averaged 3-

D Navier–Stokes spatial operator. The SANS equations are validated by incorporating

the perfect closure term computed in a 3-D system into a 2-D simulation. This allows to

recover the unsteady spanwise-averaged solution of a Taylor–Green vortex and flow past

a circular cylinder at Re = 104. The inclusion of the perfect closure radically changes

the flow dynamics, where energy and enstrophy are no longer conserved in the inviscid

limit.

Finally, an EVM has been investigated to provide closure to the SANS equations for the

cylinder flow test case. The a-priori analysis has shown that the Boussinesq hypothesis

completely fails to capture the nature of the closure terms. This underlines the need

for a different SANS model bearing in mind that, differently from RANS or LES, gen-

eral information on the physical laws governing the closure terms is still limited. The

possibility of directly computing the closure terms in 3-D systems can be exploited with

the use of data-driven models such as machine-learning algorithms, as reviewed in the

following chapter.





Chapter 5

A machine-learning model for

SANS

The modelling of the SANS closure terms is critical for the prediction of 3-D spanwise-

averaged dynamics in 2-D systems. An standard EVM, such as the Smagorinsky model,

has failed to correctly predict the SANS closure terms because of if intrinsic dissipative

and linear behaviour. While other physical models allowing energy backscatter (en-

ergy transfer from small to large scales) such as the dynamic Smagorinsky model or a

transport equation model could be explored in the future, in this chapter a data-driven

model is proposed. The limited knowledge on the spanwise stresses dynamics motivates

this choice. In particular, a supervised machine-learning (ML) model based on a deep

convolutional neural network has been designed for this purpose. A-priori results show

up to 92% correlation between target and predicted closure terms; more than an order

of magnitude better than the EVM correlation. Additionally, the ML model perfor-

mance is assessed for a different flow configuration (Reynolds regime and body shape)

to the training case and high correlation values are still captured. The new SANS

equations and ML closure model are also used for a-posteriori prediction. Even though

evidence of known stability issues with long-time ML predictions for dynamical systems

is found for the present data-driven model, the closed SANS simulations are still capable

of predicting wake metrics and induced forces with errors from 1-10%. This results in

approximately an order of magnitude improvement over standard 2-D simulations while

reducing the computational cost of 3-D simulations by 99.5%.

5.1 Introduction and literature review

In recent years, machine learning, i.e. algorithms that reveal information by process-

ing raw data inputs, have made an impact across numerous disciplines: from image

recognition, to improved web searches, content filtering, natural language processing,

53
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among others (LeCun et al., 2015). The fluid mechanics community has also adopted

ML techniques both in experimental and computational work, specifically with the use

of deep-learning methods (Kutz, 2017), where multiple layers of trainable parameters are

stacked sequentially. As data-driven models learn from observations, the vast amounts of

data generated through field measurements and high-fidelity simulations has accelerated

the application of ML models to fluid flow problems (Brunton et al., 2020).

Supervised learning, or model optimisation based on labelled examples, has yielded the

exploration of novel flow classification, control, and regression techniques. Within clas-

sification and uncertainty quantification, detection of low RANS accuracy regions in

the flow has been accomplished with the use of different ML strategies such as support

vector machines and random trees (Ling and Templeton, 2015). Deep artificial neural

networks (ANNs) have been employed for uncertainty quantification in RANS (Geneva

and Zabaras, 2019), pointwise classification and blending of appropriate turbulence clo-

sures in LES (Maulik et al., 2019), and discovery of active flow control strategies such

as drag reduction in turbulent channel flow (Lee et al., 1997).

Different control strategies have been developed using reinforcement learning which, in

contrast to supervised learning, does not rely in labelled examples and the algorithm

objective is to maximise a long-term reward signal based on self-proposed actions (Sut-

ton and Barto, 2018). Reinforcement learning has been used for (e.g.) active wake

flow control (Rabault et al., 2019; Rabault and Kuhnle, 2019) and efficient control of

collective swimmers (Verma et al., 2018). Other unsupervised learning models such as

generative adversarial networks (Goodfellow, 2014) have been used for unsteady flow

field generation (Lee and You, 2019).

The use of ML models for regression problems in fluid flows has also bloomed in the last

few years. ANNs have been used for the reconstruction of turbulent spatio-temporal sam-

pled data (Deng et al., 2019), physics-based discovery of governing equations parameters

such as Reynolds number (Raissi et al., 2019), quantitative prediction of flow fields from

scalar concentration snapshots (Raissi et al., 2020), and RANS modelling (Duraisamy

et al., 2015; Ling et al., 2016; Lapeyre et al., 2019), among others. Convolutional neural

networks (CNNs) have also become a popular tool to solve regression problems. CNNs

have been used for turbulent flow field super-resolution (Fukami et al., 2019; Liu et al.,

2020), modelling of surface pressure distribution from sparse wake flow data (Ye et al.,

2020), nonlinear mode decomposition (Murata et al., 2019), and prediction of turbulent

fields (Lapeyre et al., 2019; Kim and Lee, 2020a,b), among others.

Specifically within turbulence closures, CNNs have been applied in RANS (Weatheritt

and Sandberg, 2016) and LES (Gamahara and Hattori, 2017; Beck et al., 2019) frame-

works, establishing its utility for revealing hidden correlations between system variables

for which physical laws are, a-priori, unknown (Brenner et al., 2019). In particular,
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CNNs have been developed to efficiently learn spatial structures in data arrays by ex-

ploiting the translational invariance inherent in convolutions (LeCun and Bengio, 1995).

This makes them a very attractive tool for modelling novel and spatially-complex fields

such as the new SANS closures.

With respect to the strip-based SANS framework, the general methodology of the data-

driven ML model is based on the idea that training a SANS closure on a single local

spanwise segment (see Fig. 4.1) automatically generalises to all the spanwise-averaged

strips because of the system homogeneity in that direction. Hence, the database required

to train the model can be generated in a single 3-D simulation with a span equivalent to

the local spanwise-averaging length. For example, a structure of aspect ratio 100 can be

reduced to 100 strips, or 2-D simulations, resolving the (1-diameter) SANS equations.

The required SANS closure model can be previously trained using data of a 3-D high-

fidelity simulation of a 1-diameter-long spanwise-periodic cylinder, noting that the 3-

D simulation is the most computationally expensive part of the method as detailed

in Appendix E. In this chapter, the ML SANS closure model is assessed for a single

spanwise-averaged strip of 1 diameter.

5.2 Machine-learning model

Data-driven closures are particularly helpful when physical information of the system to

be modelled is not known a-priori, and this is certainly the case for the novel spanwise

stresses developed in this work. Hence, in this section we present a ML model for the

spanwise fluctuations thus providing closure to the SANS equations.

A CNN is proposed to map resolved quantities, Xn = {U, V, P}, to closure terms, Yn.

The CNN architecture is depicted in Fig. 5.1. The closure terms of the a-priori analysis

are the SSR tensor components (similarly to § 4.5.2), Yn =
{
〈u ′u ′〉 , 〈u ′v ′〉 , 〈v ′v ′〉

}
. On

the other hand, the perfect closure is targeted as the output of the a-posteriori analysis,

Yn = {SRx ,SRy }, in order to improve the model stability as will be discussed in § 5.3.3.

The ML model architecture is based on a multiple-input multiple-output CNN (MIMO-

CNN). The need of a high-dimensional tunable function that can reveal hidden correla-

tions in spatial data motivates the CNN choice (LeCun et al., 1989). The same model

architecture is used for both a-priori and a-posteriori analysis, where only the number

of outputs changes from three to two, respectively. Each input branch is composed of

an encoding part and a decoding part. The number of filters doubles at every convolu-

tional layer in the encoding part, reaching a maximum of 64 filters, and halves in the

decoding part. Each convolutional layer consists of a 2-D convolution operation with a

5× 5 filter (convolution kernel), a batch normalisation operation, and a rectified linear

unit (ReLU) activation function. The total number of trainable parameters is 944,739.
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X1

Xn
Yn

Y1

Figure 5.1: CNN architecture. An encoding-decoding branch is considered for each
input field. The input branches are then concatenated (_) and another encoding-
decoding branch follows. The closure terms are separately extracted on the last layer.
Arrows legend: Dark blue: Conv2D 5× 5 + batch normalisation + activation function.
Yellow: MaxPooling 2 × 2. Magenta: UpSampling 2 × 2. Green: Conv2D 1 × 1 +
wake mask + Gaussian filter. Block thickness indicates the number of filters, which
double/halve at each convolutional operation in the encoding/decoding parts.

The batch normalisation helps to speed up the neural network learning rate and im-

proves its stability with respect to the random weights initialisation (Ioffe and Szegedy,

2015). The ReLU function allows higher learning rates and handles vanishing-gradient

problems better than other standard activation functions such as the Sigmoid or the

tanh functions (Nair and Hinton, 2010). All input branches are then concatenated into

a single branch, for which another encoding-decoding branch follows. The last layer

consists of a wake mask function and a Gaussian filter.

The wake mask helps providing a clean output in the regions of the domain where the

closure terms are negligible. The wake mask is based in the vorticity field for which

the condition |Ωz| > ε is applied. Hence, a field of 1s (and 0s) is generated when the

condition is met (or not). The wake mask for the a-priori stage considers all the points

within the wake limit. The wake limit is activated using the ε = 1 · 10−3 threshold

(Fig. 5.2c). This helps the model focusing on the non-trivial region during optimisation

while still providing some areas within the wake width where the closure term is not

active. The wake mask for the a-posteriori stage applies the criterion in a pointwise

manner, hence points within the wake region might not be activated, particularity in

the far wake region (Fig. 5.2d). Also, the criterion is more strict by setting ε = 3.5 ·10−3.

This is enforced to improve the stability of the a-posteriori analysis so longer temporal

dynamics can be evaluated. Finally, a Gaussian filter of σ = 0.5 (resulting in a 5 × 5

kernel matching the feature maps size) is applied to the output of the wake detection

layer.

A detailed hyper-parametric study of the ML model has been conducted for the circular

cylinder case (similarly to § 4.5.1) in Font et al. (2020 accepted), and is also included

in Appendix D. In short, the present model architecture was compared against two

different MIMO-CNNs, and this architecture offered the best accuracy among the tested
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(a) Ωz

(b) SRx

(c) Wake mask used in the a-priori analysis.

(d) Wake mask used in the a-posteriori analysis.

Figure 5.2: A wake mask from the vorticity field is generated to focus the ML model
outputs on the non-trivial wake region alone. The aim is to match the region where
the target output (SRx ) is activated. In the a-posteriori analysis, the far-wake region is
not fully activated in order to aid the closure stability.

models. Also, it was found that the larger the CNN (in terms of trainable parameters),

the faster high correlation coefficients were obtained for a similar number of training

epochs (where epoch refers to an optimisation iteration on the training dataset). The

number of trainable parameters was modified by changing the number of filters per layer.

The sum of the squared error as a loss function provided the best performance when

compared to the sum of the absolute error. The use of primitive variables (velocity and

pressure) did not yield significant differences when compared to the velocity gradient
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tensor components set. Both these input sets showed a better performance than a third

input set containing the vorticity field and the distance function to the cylinder.

Unsteady turbulent flow past a circular cylinder with a 1 diameter span (Lz = 1) at

Re = 104 (as considered in § 4.5.1) has been used to generate a dataset containing a

total of 7000 samples of 1216 × 540 size during ∆t∗ = 1650 and using a sampling rate

of δt∗ = 0.25. The 1 diameter span is sufficiently long to sustain 3-D turbulence on a

meaningful wake region and it is also a sensible choice of the minimum structural mode

wavelength that would need to be resolved in a SANS-based strip-theory framework. The

input fields are normalised with the standard score, i.e. x̂ = (x−x)/σx. As in Beck et al.

(2019); Kim and Lee (2020b), a single Re regime is used in the dataset generation, which

is deemed sufficient because of the turbulent nature and unsteadiness of the flow. The

constant energy transfer rate across different scales in the inertial subrange of turbulence

implies that closures trained on one Re should generalise reasonably well to unseen Re

as long as the mean flow characteristics are similar. Such study is conducted in § 5.3.2.

The dataset is split with 6000 samples for optimisation (training), 500 samples for val-

idation during training, and 500 for evaluation (testing) purposes. The dataset split is

chosen as often encountered in the machine learning literature, probably adopted from

power law (or Pareto) distributions (Newman, 2005). To ensure the closure’s ability to

generalise and avoid overfitting, the time windows for testing, optimisation and valida-

tion do not overlap, i.e. the closure is assessed on a continuous window of previously

unseen flow. A mini-batch stochastic gradient descent method based on the Adam op-

timiser (Kingma and Ba, 2014) is used to update the network weights during training.

The sum of the squared error function is used for optimisation

Loss =

m∑
i

n∑
j

(
Yi,j −YML

i,j

)2
, (5.1)

where m is the size (number of samples) of the mini-batch, n is the output index, and

the superscript (·)ML denotes the ML model prediction. When the validation error does

not decrease for 5 epochs or a total of 60 epochs is reached, training is stopped (a.k.a.

early-stopping).

The ML model training history of the SSR tensor components is plotted in Fig. 5.3,

where a rapid convergence cap be appreciated. The early-stopping criterion is triggered

on the 46th epoch since it provides the lowest validation error not improved for the next

5 epochs. On the other hand, the training history of the perfect closure components

is plotted in Fig. 5.4. In this case, the early-stopping criterion is not triggered and

optimisation is performed during 60 epochs (the maximum defined).
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Figure 5.3: Training of the Yn ={
〈u′u′〉, 〈u′v′〉, 〈v′v′〉

}
output set. The

vertical red dashed line indicates the
early stop. Grey: combined train-
ing loss. Black: combined validation
loss. Blue: 〈u′u′〉 correlation coeffi-
cient. Purple: 〈u′v′〉 correlation coef-
ficient. Cyan: 〈v′v′〉 correlation coeffi-
cient.
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Figure 5.4: Training of the Yn ={
SRx ,SRy

}
output set. Grey: combined

training loss. Black: combined valida-
tion loss. Blue: SRx correlation coef-
ficient. Purple: SRy correlation coeffi-
cient.

5.3 Results

5.3.1 A-priori analysis

To allow a comparison with the EVM, the anisotropic part of the SSR tensor is recovered

from the ML model predictions of the full SSR tensor. The fact that the ML model yields

the full SSR tensor already provides an advantage with respect to the EVM since no

further modifications of the governing equations are required, nor an additional transport

equation for the SSR kinetic energy.

The predicted anisotropic SSR tensor components (τ r,ML
11 , τ r,ML

12 , τ r,ML
22 ) are depicted in

Fig. 5.5, and the predicted components of the full SSR tensor (〈u ′u ′〉ML , 〈v ′v ′〉ML) are

depicted in Fig. 5.6. It can be appreciated that large-scale structures are overall correctly

captured. On the other hand, small-scale structures, such as those encountered in near-

wake region, are more difficult to predict. Similar issues have been found for other

CNN-based data-driven models (Lee and You, 2019). A Gaussian filtering operation

together with a wake detection feature aids the CNN to provide less noisy predictions

focused on the wake region alone. This helps mitigating error propagation in an a-

posteriori framework (see next section), however, it can have an impact on the small-

scale structures as well.
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Table 5.1: Correlation coefficients between components of the anisotropic SSR tensor
and predictions provided by the EVM and the ML model.

CC τ r11 τ r12 τ r22

EVM 0.06 0.06 0.14
ML 0.90 0.92 0.92

Table 5.2: Correlation coefficients between target SSR tensor components and ML
model predictions.

CC 〈u ′u ′〉 〈u ′v ′〉 〈v ′v ′〉
ML 0.95 0.92 0.96

The correlation coefficients are calculated for the 500 snapshots of the test dataset and the average
values are provided.

A significant improvement is qualitatively observed when comparing the predictions

against the EVM, where the latter fails to capture almost all flow structures except

for the largest ones (Fig. 4.10). Furthermore, correlation values above 90% have been

achieved for all the anisotropic SSR tensor components (Tab. 5.1), as well as the full

SSR tensor components (Tab. 5.2). It can be concluded that the ML model provides

a significantly better prediction of the closure terms compared to the EVM, which is

critical for SANS to correctly model turbulence wake dynamics.
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(a) τ r11

(b) τ r,ML
11

(c) τ r12

(d) τ r,ML
12

(e) τ r22

(f) τ r,ML
22

Figure 5.5: ML model prediction of the anisotropic SSR tensor components compared
to reference data.
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(a) 〈u ′u ′〉

(b) 〈u ′u ′〉ML

(c) 〈v ′v ′〉

(d) 〈v ′v ′〉ML

Figure 5.6: ML model prediction of the full SSR tensor components compared to ref-
erence data.
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5.3.2 Generalisation across flow regimes and geometries

So far, it has been demonstrated that the trained ML model can correctly predict the

SANS closure terms of previously unseen snapshots of the cylinder case, i.e. the model

has correctly generalised in time. Here, the generalisation of the ML model to other flow

configurations such as body shapes and Reynolds regimes is assessed. This analysis is

important because, first, it provides information on whether training the ML model in a

fixed set-up can still be useful for the prediction of the SANS stresses in a different case.

Second, it is a good test to check that the ML model has not over-fitted the training

data even with the use of the early-stopping criterion.

Four different cases are studied: Flow past a circular cylinder at Re = 1000. Flow

past a circular cylinder at Re = 3900. Flow past an ellipse with axis (x, y) = (2D,D)

(ellipse 1) at Re = 104. Flow past an ellipse with axis (x, y) = (0.5D,D) (ellipse 2)

at Re = 104. Similarly to the circular cylinder case at Re = 104, a test dataset of 500

snapshots has been generated during ∆t∗ = 125 time units after reaching a statistically

stationary state of the wake for all cases. Both output target sets, i.e. the full SSR

tensor components and the perfect closure components, are analysed.

Tab. 5.3 quantifies the accuracy of the ML model in terms of mean correlation coefficient

to target data. Note that correlation values are provided for two wake regions, and these

can be visualized in Fig. 5.7: one involving the non-trivial wake region (same region as

used in previous results, noted in green dashed lines) and one discarding the region

surrounding the body (noted in blue dashed lines), i.e. x ∈ [0.75Dx, 12Dy] where Dx

and Dy are the streamwise and crossflow body lengths, respectively. With respect to

the model generalisation in different Reynolds regimes, its prediction ability on the

Re = 3900 case is similar to the training case (Re = 104) since the correlation values

provided in both cases are very close. For the Re = 1000 case, similar results are also

obtained to the training case, specially when the near-body region is cropped out of the

correlation analysis. Qualitatively, the ML model prediction of the spanwise stresses is

displayed in Fig. 5.8 and Fig. 5.9 for the Re = 1000 and Re = 3900 cases, respectively.

Again, a similar performance to the training case is observed; mid- and large-scale

structures are correctly captured whereas small-scale structures are not reconstructed

as in the target data. For the Re = 1000 case, it can also be observed how the ML

model struggles to predict the spanwise stresses in the region near to the body.

Regarding the ellipse cases at Re = 104, high correlation values are observed when the

near-body region is cropped out of the correlation analysis as displayed Tab. 5.3. On

the other hand, the ML model fails to correctly predict the spanwise stresses in the

shear-layer region. This behaviour can be appreciated in Fig. 5.10 and Fig. 5.11, where

patches of high-intensity spanwise stresses arise at the vicinity of the body. To a lesser

extent, such discrepancies can also be observed for the Re = 1000 and Re = 3900 circular

cylinder cases. It indicates that training the ML model in a single flow configuration
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Figure 5.7: Regions used for the ML model analysis. Black: Input and output region
of the ML model. Green dashed: Region used to compute the correlation coefficient
between ML predictions and target data (full wake). Blue dotted: Region used to
compute the correlation coefficient between ML predictions and target data omitting
the near-body domain (downstream wake).

generalises well for lower Reynolds regimes and body shape across the wake except for

the the shear-layer region, which performs better when it resembles the training data. It

is important to stress that the shear layer information contained in the training database

is limited, so the spatial patterns learnt by the CNN related to this region cannot be

recombined for previously unseen cases. This limitation has also been reported in Lee

and You (2019), where flow past a circular cylinder at Re = 300 and Re = 500 is used

as training data and the model is then tested at Re = 150, 400, 3900. Similarly, their

results show a better agreement for the test cases that resemble the flow within the

training Reynolds regime. Another issue arising in our generalisation results is the over-

or under-prediction of the spanwise stresses intensity (not reflected in the correlation

coefficients), noting that the ML model predictions and the reference data are plotted

using the same scale. This can be observed in Fig. 5.10e. The current input data

normalization method, based in each snapshot standard score, is a factor that might

result in this difference.

Overall, the ML model has shown an excellent performance on the generalisation across

lower Re and different body shapes providing correlation values similar to the training

case. Additionally, this indicates that the training data is not over-fitted. Two limita-

tions on the generalisation have been observed: the prediction of the spanwise stresses in

the shear-layer region and the over- or under-prediction of the spanwise stresses intensity

in some cases.
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Table 5.3: Correlation coefficients between target data and ML model predictions for
the different generalisation cases. FW and DW refers to the correlation coefficient for
the green-dashed region and blue-dotted region of Fig. 5.7, respectively.

Case CC 〈u ′u ′〉 〈u ′v ′〉 〈v ′v ′〉 SRx SRy

Cylinder, Re = 1000
FW 0.86 0.90 0.92 0.86 0.91
DW 0.94 0.94 0.96 0.93 0.95

Cylinder, Re = 3900
FW 0.94 0.91 0.95 0.89 0.92
DW 0.96 0.93 0.96 0.91 0.93

Ellipse 1, Re = 104 FW 0.61 0.60 0.79 0.67 0.69
DW 0.93 0.90 0.95 0.86 0.91

Ellipse 2, Re = 104 FW 0.91 0.21 0.92 0.07 0.06
DW 0.94 0.91 0.94 0.89 0.89

The correlation coefficients are calculated for the 500 snapshots of the test dataset and the average
values are provided.

(a) 〈u ′u ′〉

(b) 〈u ′v ′〉

(c) SRx

(d) 〈u ′u ′〉ML

(e) 〈u ′v ′〉ML

(f) SR,ML
x

Figure 5.8: Cylinder, Re = 1000 case: ML model predictions of components of the SSR
tensor and the perfect closure compared to reference data.
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(a) 〈u ′u ′〉

(b) 〈u ′v ′〉

(c) SRx

(d) 〈u ′u ′〉ML

(e) 〈u ′v ′〉ML

(f) SR,ML
x

Figure 5.9: Cylinder, Re = 3900 case: ML model predictions of components of the SSR
tensor and the perfect closure compared to reference data.

(a) 〈u ′u ′〉

(b) 〈u ′v ′〉

(c) SRx

(d) 〈u ′u ′〉ML

(e) 〈u ′v ′〉ML

(f) SR,ML
x

Figure 5.10: Ellipse 1, Re = 104 case: ML model predictions of components of the SSR
tensor and the perfect closure compared to reference data.
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(a) 〈u ′u ′〉

(b) 〈u ′v ′〉

(c) SRx

(d) 〈u ′u ′〉ML

(e) 〈u ′v ′〉ML

(f) SR,ML
x

Figure 5.11: Ellipse 2, Re = 104 case: ML model predictions of components of the SSR
tensor and the perfect closure compared to reference data.

5.3.3 A-posteriori analysis

The use of the ML model in the a-posteriori framework is assessed next, i.e. the trained

closure is embedded directly into the simulation and no knowledge of the correct flow

is assumed. As before, the goal is to recover the unsteady spanwise-averaged solution

of the original 3-D flow using only a 2-D system. Starting from a spanwise-averaged

initial condition, the ML model is incorporated into a 2-D solver providing closure to

the SANS equations at every time step.

The most important aspect of the a-posteriori analysis revolves around the system sta-

bility. Ideally, a stable closure would be provided at every time step even when noisy

inputs are given to the ML model. For the system to be stable, the spanwise-average

attractor should dictate the temporal evolution of the flow and prevent the 2-D flow

dynamics dominating as well as prevent the growth of non-physical effects.

For our test case, it has been found that directly incorporating the raw output of the

SSR tensor ML model prediction (τR,ML
ij ) into the fluid solver makes it to rapidly diverge

from the physical solution as the flow evolves in time. The noise in the predicted fields

is amplified by the divergence operator, which in turn significantly contaminates the

resolved quantities at every time step in a feedback loop. To mitigate this issue, the

ML model has been trained to predict the perfect closure (SR) instead of the SSR

tensor. Hence, the new target outputs of the CNN are Yn = {SRx ,SRy }. Issues related to
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Table 5.4: Correlation coefficients between the perfect closure and the ML model pre-
dictions.

CC SRx SRy
ML 0.89 0.90

The correlation coefficients are calculated for the 500 snapshots of the test dataset and the average
values are provided.

Table 5.5: Comparison of different metrics recorded during ∆t∗ = 10 time units for the
3-D, SANS, and 2-D systems.

〈3-D〉 SANS 2-D

CD 1.17 1.14 (-2.6%) 1.35 (+15.4%)

CL 0.46 0.51 (+10.9%) 0.91 (+97.8%)

E 374.34 374.84 (+0.1%) 376.44 (+0.6%)

Z 0.0150 0.0151 (+0.6%) 0.0189 (26.0%)
Cost [h] 80.4 0.43 (-99.5%) 0.21 (-99.7%)

The overline indicates a temporal average except for the lift coefficient, for which the r.m.s. value is

provided. Energy (E) and enstrophy (Z) of the 3-D system are calculated using the streamwise and

crossflow velocity components alone. The relative error to the 3-D case is expressed in parenthesis.

The computational cost is expressed in hours and normalised by number of processes and clock speed.

The same constant time step is used in all systems.

data-driven closure stability are discussed in detail in Cruz et al. (2019) under a RANS

formulation. It is suggested that learning the divergence of the residual tensor instead

of its components helps reduce the error accumulation on the resolved quantities.

Before inserting the ML model prediction of the perfect closure into the 2-D system,

an a-priori analysis of the trained model is performed (the training history is displayed

in Fig. 5.4). High correlation values are found for both perfect closure components, as

presented in Tab. 5.4. Qualitatively, the ML model prediction of both components is

displayed in Fig. 5.12. Again, mid- and large-scale structures are correctly captured

while small-scale structures present a weaker correlation.

Learning the perfect closure improves the system stability and delays the transition to

2-D dynamics. Starting from a spanwise-averaged snapshot of the 3-D flow, a-posteriori

statistics are recorded as the flow evolves over ∆t∗ = 10 time units, and these are

summarised in Tab. 5.5. As shown in Fig. 5.13, the global enstrophy deviates from

the spanwise-averaged reference data obtained in the 3-D system as a result of the ML

model error accumulation. This is also reflected in the kinetic energy evolution, which

increases with respect to the reference data. On the other hand, both metrics still provide

a notable improvement compared to the pure 2-D prediction. The forces induced to the

cylinder (Fig. 5.14) also appear to be in better agreement with the reference data when

including perfect closure ML predictions. It becomes clear from Tab. 5.5 that the SANS



Chapter 5 A machine-learning model for SANS 69

(a) SRx

(b) SR,ML
x

(c) SRy

(d) SR,ML
y

Figure 5.12: ML model prediction of the perfect closure components.

equations yield results closer to a 3-D system while offering the same computational cost

order of 2-D simulations. The computational cost overhead between the SANS and 2-D

systems is related to the data transfer between the fluid solver and the ML model, plus

the ML model prediction time.

Additionally, the instantaneous spanwise vorticity is depicted in Fig. 5.15. It is worth

noting that the shear layer roll-up region of the SANS snapshot is not as coherent as the

2-D system, where structures have already reorganised into large scales. In particular,

the bottom detaching vortex of the SANS simulation is not as energised as the pure 2-D

simulation one, and small-scale structures are still found in the SANS snapshot. The

close-wake region dictates the forces induced to the cylinder, explaining the significant

difference in lift and drag forces shown in Tab. 5.5. In general, vortices found in the SANS

simulation do not appear as coherent as in the 2-D case, where the inverse energy cascade

promoted via vortex-merging and vortex-thinning events rapidly two-dimensionalises the



70 Chapter 5 A machine-learning model for SANS

0 2 4 6 8 10
∆t∗

0.995

1.000

1.005

1.010

1.015

1.020
E
/E

0

〈3-D〉
SANS: 2-D + SR,ML

2-D

Figure 5.13: Kinetic energy (left) and enstrophy (right) evolution during ∆t∗ = 10
for the 3-D spanwise-averaged (reference data), SANS, and 2-D systems. Simulations
are started from a 3-D spanwise-averaged snapshot at t∗0, corresponding to the scaling
energy (E0) and enstrophy (Z0). Energy and enstrophy are computed as detailed in
Fig. 4.5 caption.
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Figure 5.14: Lift (bottom) and drag (top) forces induced to the cylinder (computed as
described in Fig. 4.7). The lines legend is equivalent to Fig. 5.13.

wake structures. A closer look on the SANS small-scale structures also shows that these

are not correlated to the reference data. This can also be appreciated at the top shear

layer roll-up, where the error starts to propagate to the far field. The ML closure error

is responsible for such phenomenon, and ultimately yields the divergence of the system

dynamics.
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(a) 〈3-D〉

(b) SANS

(c) 2-D

Figure 5.15: Spanwise vorticity snapshots for: (a) Spanwise-averaged 3-D flow (refer-
ence data). (b) SANS with SR,ML. (c) 2-D simulation (no-model). The SANS and the
2-D systems are started from a spanwise-averaged snapshot of the 3-D simulation at t∗0.
The snapshots above correspond to ∆t∗ = 1.

5.4 Discussion and conclusion

This chapter introduces a ML model for the SANS equations, enabling 3-D turbulent

flows with a homogeneous flow direction to be modelled using a 2-D system of equations

with an observed speed up of 99.5%. The SSR tensor is critical to the success of this

description, driving the 2-D flow dynamics to match the 3-D statistics and flow forces.

While EVMs are completely inadequate to model the SSR tensor, we develop a data-

driven closure based on a deep-learning network with tested correlation statistics above

90%. The trained ML model also performs well in different Reynolds regimes and body

geometries to the training case, despite some discrepancies in the near-body region.

The success of ML models for turbulent flows in an a-posteriori set-up is still limited,

and the error propagation into the resolved quantities remains an open issue (Wang

et al., 2017; Beck et al., 2019). Stability has been previously achieved by projecting

the ML model output into a known stable closure such as EVMs for time-averaged
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(RANS) or filtered (LES) systems (Maulik et al., 2018; Beck et al., 2019; Cruz et al.,

2019). Also, highly-resolved simulations help to mitigate the closure weight resulting in

more stable computations (Gamahara and Hattori, 2017). Unfortunately, these solutions

cannot be implemented in SANS because, as previously exposed, the EVMs hypothesis

is intrinsically different from the nature of the SSR tensor.

Employing recurrent neural networks (RNN) for the prediction of SANS closure terms is

a research direction worth exploring in the future. RNNs incorporate the system tempo-

ral dynamics so they can offer a more stable a-posteriori solution targeting statistically

stationary metrics (Vlachas et al., 2018; Kim and Lee, 2020a). In this sense, the use

of long-short term neural networks (a type of RNN) similarly to Vlachas et al. (2018),

together with CNNs could help overcome the issues exposed in the SANS closure. Addi-

tionally, a physics-informed loss function can also improve the model stability as shown

in Lee and You (2019). Finally, while the current model is initialised from a 3-D aver-

aged simulation, a more stable closure should be capable of developing 3-D turbulence

dynamics even when initialised with a pure 2-D flow snapshot.

Overall, the new SANS flow description combined with advances in data-driven mod-

elling has the potential to vastly improve the speed and accuracy of turbulence simula-

tions for a prevalent class of engineering and environmental applications.



Chapter 6

Conclusions and future work

6.1 Summary of contributions

This work proposes to drastically speed up turbulent flow simulation by averaging in a

homogeneous direction, such as along the span of a marine riser, a slender building, or

an aircraft wing. Differently from standard strip-theory methods, 3-D turbulence effects

are directly incorporated in the 2-D system as closure terms, thus significantly improving

current 2-D models. This has been accomplished with the following main contributions,

• Improved physical understanding of the role of small-scale 3-D structures in high-

Reynolds incompressible wake flow and the forces induced to the cylinder.

• A new 2-D model arising from a dimensionality reduction of the 3-D flow by local

spanwise averaging.

• The design of a ML closure for the spanwise-averaged equations system based on

a CNN.

First, the 3-D effects inherent in turbulent flows which present an homogeneous direction

have been investigated by a systematic reduction of the span of a circular cylinder at

Re = 104. Multiple span lengths ranging from a pure 2-D system to 10 diameters

have been analysed using highly-resolved simulations. Different turbulence metrics of

the wake have revealed that small-scale 3-D structures can be observed even when the

span is less than half a diameter long. The small-scale structures generated in the shear

layer are rapidly two-dimensionalised by the natural large-scale rotation of the Kármán

vortices, a mechanism also encountered in obstacle-free turbulent flows (Smith et al.,

1996; Xia et al., 2011). It has been found that the critical span at which 3-D turbulence

dynamics dominate the wake is the Mode B instability wavelength (approximately one

diameter), in agreement with Bao et al. (2016). Since the Mode B instability helps

sustaining the turbulent structures advected from the shear layer, the lack of it prevents

large-scale 3-D structures to be created and less dissipative structures can be sustained.
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Additionally, it has been also shown that 2-D and 3-D turbulence dynamics can coexist

at certain positions of the wake depending on the domain geometric anisotropy.

In order to reduce the computational cost of simulating turbulent wake flow, a model

based on the flow spatial average in its homogeneous direction is proposed, thus reduc-

ing the problem dimensionality from 3-D to 2-D. This 2-D model, namely the spanwise-

averaged Navier–Stokes (SANS) equations, incorporates 3-D effects in the form of SSR

closure terms, which change the flow dynamics from standard 2-D Navier–Stokes to

spanwise-averaged dynamics. The verification of the SANS equations has been con-

ducted for the Taylor–Green vortex and the cylinder wake flow cases using the perfect

closure model. The perfect closure is the residual between the spanwise-averaged 3-D

spatial operator and the 2-D spatial operator of the momentum equations. For both

test cases, extracting the perfect closure from a 3-D simulation and inserting it into the

2-D solver has allowed to recover the unsteady spanwise-averaged flow, as shown in the

temporal evolution of global energy and enstrophy. For the circular cylinder test case,

including the perfect closure in the SANS simulation yields forces induced to the cylinder

as obtained in the high-fidelity 3-D simulation at a fraction of its computational cost.

Since the perfect closure is not available when deploying SANS in a live simulation,

alternative models have been investigated. A standard EVM employing the Smagorinsky

closure has been tested in the a-priori framework. The EVM has provided very low

accuracy for the modelling of the SANS closure terms. This is related to the intrinsic

formulation of the eddy-viscosity hypothesis, which assumes that turbulent fluctuations

only have a dissipative effect. In the spanwise-averaged system, the spanwise stresses

can be both dissipative and energising, and this is a fundamental difference which no

EVM can reproduce.

Because of the EVM poor performance, a data-driven approach has been designed to

improve the SANS closure terms prediction. The use of data-driven model for a SANS

strip-theory method is advantageous because the training dataset can be obtained in a

3-D high-fidelity simulation only comprising the spanwise-averaging length, instead of

the full span (as in Fig. 4.1, where La � Lz). This is justified by the flow spanwise

homogeneity, since an equivalent dataset would be obtained for a 3-D simulation in

a spanwise-shifted location. The trained ML model could then be used for all the 2-

D strips in a SANS strip-theory framework. A ML model based in a CNN has been

considered for the modelling of the spanwise stresses, and a dataset of the closure terms

has been generated for a circular cylinder of one diameter span.

In the a-priori analysis, the ML model prediction of the anisotropic SSR tensor compo-

nents has provided correlations of 90-92%, thus greatly improving the EVM performance.

While large-scale structures were overall correctly captured, small-scale structures were

still hard to predict, as also found in other CNN-based data-driven models for turbu-

lent flows (Lee and You, 2019). Additionally, the ML model trained with a single test
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case (circular cylinder at Re = 104) has been assessed for other Reynolds regimes and

body geometries. It has been observed that the ML model is still capable of correctly

predicting the SANS closure terms in the downstream wake region with high correlation

values (86% − 96%). On the other hand, the prediction of the near-body region has

shown a poorer performance because of the case-dependent shear layer that different

flow regimes and body geometries develop.

In the a-posteriori analysis, it has been found that applying the divergence operator to

the raw output of the SSR tensor ML model prediction amplifies the modelling error

significantly, hence yielding an unstable closure as also observed in Cruz et al. (2019).

Because of this, the perfect closure has been targeted as the new ML model output,

instead of the SSR tensor components, so that no derivatives are directly applied to

the ML predictions. The ML model a-priori performance on the perfect closure terms

showed correlations of 89-90% with the target quantities. In the a-posteriori analysis, the

ML model predicts the perfect closure at every time step based only on the resolved flow

quantities (U , P ). While we found evidence of known stability issues with long-time ML

model predictions for dynamical systems, the closed SANS simulations are still capable

of predicting wake metrics and induced forces with errors from 1-10%. This results in

approximately an order of magnitude improvement over standard 2-D simulations while

reducing the computational cost of 3-D simulations by 99.5%.

6.2 Technical achievements

The fluid solver used throughout this thesis is the in-house 3-D iLES immersed-boundary

code “Lotus”, described in Chapter 2 and developed by Gabriel D. Weymouth as an

extension of the 2-D real-time fluid solver “Lily Pad” (Weymouth, 2015). Contributions

to “Lotus” have been made to accommodate the solver for the needs of this work (or not)

such as an extension for internal flows, addition of a passive scalar equation, adaptation

of the software package to be run in HPC facilities (supercomputers), and an interface

to allow data transfer between the Fortran fluid solver and the Python ML model (Font,

2019a). More details of the Fortran-Python interface can be found in Appendix E

together with specifications of the hardware employed.

As any computational investigation, a significant part of the workload has been spent

in post-processing data. All the developed post-processing tools have been gathered

in Font (2018), such as the analysis of turbulence statistics, tracking flow separation

points on the cylinder surface, data plotting and video rendering, among others. On

the other hand, the implemented ML model providing closure to the SANS equations

can be found in Font (2019b). It has been written using Keras (Chollet et al., 2015),

a high-level deep-learning Python library employing TensorFlow (Abadi et al., 2015) as

backend.
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6.3 Limitations

The SANS equations have been proposed as an improvement of current 2-D strip-theory

methods, which do not take into account the 3-D turbulence effects of the flow and

instead use arbitrarily dissipative turbulence models. However, some intrinsic limita-

tions of standard strip-theory methods would also apply to a SANS-based strip-theory

method. For example, strip-theory methods cannot directly capture variations of the

flow out-of-plane angle of attack or twisting of the cylinder. In this scenario, the flow

would no longer be homogeneous in the spanwise direction and the SANS system would

struggle to provide a physical answer. Regarding the strips spanwise resolution, the

minimum number of 2-D planes still depends on the highest mode of the structural

response, and three 2-D planes per half wavelength would be required (Willden and

Graham, 2004).

With respect to the SANS equations closure, known limitations of ML models have also

been faced. A certain degree of randomness of the ML model has been observed both

in a-priori and a-posteriori frameworks. This is derived from the fact that the CNN

weights are initialised in a random manner and that stochastic backpropagation is used

for the CNN weights optimisation. This has translated in failed trainings of the CNN

as well as converged optimisations which yield poor results in the a-posteriori analysis.

In these cases, the training has been repeated until a better local minima was reached.

The generalisation of the ML model to flow configurations different from the training

case (in terms of Reynolds number and body geometry) has also presented difficulties in

the prediction of the SANS closure terms near the body. This arises from fact that the

shear-layer region is strongly case-dependant and such information was only provided

by the single training case. Adding other flow configurations to the database could help

mitigate this issue.

Furthermore, the ML model error accumulation in the resolved quantities during an

a-posteriori run is an important limitation of the current approach. Although successful

for short temporal dynamics, the implemented ML model diverges from the spanwise-

averaged attractor at every time step. Eventually, it yields a non-physical solution and

the simulation has to be stopped. Still, the current model works as a proof-of-concept

which simultaneously serve the purpose of motivating other authors to develop new

closures of the SANS equations.

6.4 Recommendations for future work

All the exposed limitations of the current work offer an opportunity for improvement.

The main impediment encountered is, as exposed, the limited closure stability of the
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current ML model for the SANS equations. The development of a general and stable

closure for SANS could represent a turning point in the simulation of slender bodies as

a result of new SANS strip-theory methods. In this regard, the following ideas could be

worth exploring:

• A CNN model embedded in a RNN architecture to capture both the spatial pat-

terns and the temporal dynamics of the SANS closure terms. In convolutional

RNNs, a series of consecutive snapshots are provided as input data so that the

model learns how spatial structures evolve in time. RNNs have demonstrated to

be successful for the prediction of statistically-stationary metrics in chaotic systems

(Vlachas et al., 2018; Kim and Lee, 2020b).

• Adding a physical constraint in the loss function (a.k.a physics-based machine

learning, or PBML) has also been useful for improving the stability of ML-based

closures, as shown in Lee and You (2019). At the same time, the dataset size

required for optimisation can be significantly reduced when using PBML models

(Weymouth, 2019).

• Projection of the ML model predictions into a stable closure. This has been

done for a ML model of SGS stresses in a LES framework, where the ML model

output is fit into an EVM (Beck et al., 2019). This approach would not work for

the SANS equations since it has been shown that EVMs are not suited for the

modelling of spanwise stresses. Still, a stable closure accounting for production

and dissipation of the closure terms similarly to Reynolds-stress models in RANS

could be investigated.

• Learning how to reverse the 2-D dynamics domination over the spanwise-averaged

dynamics. This could be explored by feeding the ML model a spanwise-averaged

snapshot followed by snapshots evolved without the inclusion of the SSR terms.

The model would be informed that this temporal dynamics are to be corrected by

providing the actual spanwise-averaged snapshot of the next time step in the loss

function. In this way, the ML model weights can be optimise to prevent or reverse

2-D dynamics back to spanwise-averaged flow.

• Use of a generative adversarial neural network (Goodfellow, 2014) able to discern

when the ML model prediction is not within the spanwise-averaged system attrac-

tor. This can also help identifying the 2-D dynamics dominating the flow and

trigger a corrective action. Such corrective action could be the projection of the

2-D dominated flow field into a realistic spanwise-averaged snapshot according to

examples previously shown during training.





Appendix A

Reynolds regimes of flow past a

circular cylinder

The classification of flow past a circular cylinder according to its Reynolds regime is

summarised in Tab. A.1. The flow remains laminar, steady and 2-D along the span up to

Re < 47 and, from this point onwards, vortex shedding starts to develop. A supercritical

Hopf bifurcation is responsible for the onset of the laminar vortex shedding (Williamson,

1996b). An oblique shedding with respect to the axis of the cylinder might also be

observed when perturbations are introduced into the end-boundaries of the cylinder

(often arising in experiments rather than numerical simulations). Otherwise, the wake

remains 2-D up to Re = 160−180, where the first 3-D instability at the wake (Mode A)

comes into the picture. This mode arises naturally and is characterised by streamwise

vortices with a spanwise wavelength (λz) of approximately 4 diameters. The shedding

frequency (fs) experiences a rapid decrease at the onset of this instability. There is

no general agreement on the physical mechanism driving this instability even though

some authors suggest a core instability, braid instability, elliptical vortex instability or

centrifugal instability (Noack, 1999a).

Table A.1: Reynolds regimes of incompressible viscous flow past a circular
cylinder. Note that some Reynolds numbers might differ among authors.

Flow phenomenon Reynolds regime

Laminar 2-D steady Re < 47
Laminar 2-D vortex shedding 47 < Re < 80
Mode A 3-D wake transition (λz/D ≈ 4) 180 < Re < 230
Mode B 3-D wake transition (λz/D ≈ 1) 200 < Re < 104 − 105

Mode C 3-D wake transition (λz/D ≈ 2) 170 < Re < 270
Turbulent wake transition 260 < Re < 300
Subcritical regime 250 < Re < 2 · 105

Drag crisis 2 · 105 < Re < 4 · 105

Supercritical regime 4 · 105 < Re
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Around Re = 200 − 230, Mode B takes place and Mode A gradually decreases. The

Mode B instability presents a spanwise wavelength of roughly 1D. Rib-like streamwise

vortices are generated and the mode becomes more dominant as Re increases, eventually

replacing all other transition modes at Re = 260. During this process, the wake spanwise

correlation length increases as well. With this, it can be noted that the natural wake

transition scenario is successively: 2-D vortex shedding, Mode A, Mode B. The Mode

C instability is not a natural mode since it requires direct excitation from added per-

turbations or specific boundary conditions. It is characterised by a 2Ts vortex-shedding

period, a spanwise wavelength in the order of 2 diameters, and it has been observed typ-

ically within Re < 300. For Re > 270, the Mode C instability periodicity becomes less

apparent as the wake transitions to a turbulent state (Jiang and Cheng, 2020). Further

information including diagrams and flow visualisations of 3-D instability mechanisms

can be found in Williamson (1996a,b).

It is difficult to accurately define the actual turbulence transition point on the wake and

this is normally indicated through temporal averages. The transition to turbulence is

triggered by the interaction of the different wake instabilities. With increasing Reynolds

number, the subcritical regime takes place. A sharp decrease of the lift force on the

cylinder (increase on base suction) is found as well as a decrease in the Strouhal number.

Up to Re = 5 · 103, the transition appears to be caused by rib-like vortices of Mode

B-type and the transition point is in a fixed streamwise position with respect to the

cylinder. As the Reynolds number increases, the transition is driven by 3-D structures

generated through the interaction of the Kármán vortices with the separated shear layer,

a.k.a. shear-layer transition regime. This results into an upstream displacement of the

transition point (Bloor, 1964; Williamson, 1996b; Norberg, 2001).

The drag crisis is observed at Re = 2 · 105 and arises because of the cylinder bound-

ary layer becoming turbulent. This causes the separated shear layer to narrow as the

separation points are moved towards the rear part of the cylinder. A sharp reduction

in drag and base suction can be appreciated. Laminar separation bubbles can also be

observed on the cylinder surface. Finally, above Re = 4 · 105, the supercritical (and

transcritical for Re > 106) regime is defined. The wake is further narrowed and the

shedding frequency increases. Asymmetrical (laminar/transitional) states of separation

bubbles at both upper and lower sides of the cylinder can be observed (Noack, 1999b).



Appendix B

Validation and verification of the

in-house solver

A grid convergence study has been conducted in order verify the correct implementation

of the governing equations and to show that the selected grid resolution and averaging

time length is suitable for a proper analysis. Three grids with different resolution (∆)

designed as shown in Fig. 3.2 have been investigated for the Lz = π case (see details in

Tab. B.1). The refinement ratio is
√

2.

The quantities of interest of the present work are the turbulence statistics arising from

time and spatial averages. Because of this, we need to ensure that the presented re-

sults are statistically stationary and have converged in spatial resolution terms. The

velocity temporal power spectrum constructed analogously to Fig. 3.4 at the (x, y) =

(2, 0.8) , (8, 0.8) locations is used with this purpose. The spectrum produced by the

investigated grids is shown for different time signal lengths in Fig. B.1.

At the near wake region, the coarse grid shows a converged spectrum (−5/3 inertial

subrange decay) for time signals with ∆t∗ > 200. A similar behaviour is captured with

the medium grid, which shows a converged spectrum for time signals with ∆t∗ > 100

and the resulting inertial subrange accommodates more frequencies. At the far wake

D/∆ NCG (M) NT (M)

64 65.3 109.2
90 189.5 311.4

128 510.6 855.6

Table B.1: Details of the three different grids ranging from coarse (D/∆ = 64, i.e. 64
cells per diameter) to fine (D/∆ = 128) for Lz = π. NGC refers to the total number of
cells (in millions) for the Cartesian grid subdomain. NT refers to the total number of
cells (in millions).
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Figure B.1: Vertical velocity component temporal PS at the close (left) and far (right)
wake regions. The coarse, medium and fine grid results are displayed at the first, second
and third row respectively. The spectra are shifted a factor of 10 and the vertical axis
ticks correspond to the ∆t∗ = 50 case. The number of the time signal splits selected for
the Welch method (n) ensures a minimum of ∆t∗ = 50 per split (at least 8 times larger
than the lowest frequency of interest, i.e. the shedding frequency which is approximately
∆t∗ = 5), and a maximum of 6 splits per total time signal. The dotted line corresponds
to a −5/3 slope.
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Figure B.2: Comparison of the Reynolds shear stress u′v′ between: (a) DNS data from
Dong and Karniadakis (2005) and (b) present solver. The contour levels criteria is the
same as the reference data: |u′v′|min = 0.03 and ∆u′v′ = 0.01. Positive and negative
levels are noted with continuous and dashed lines respectively.

region, the coarse grid presents slightly steeper spectra than at the close wake region.

This can be caused by an insufficient resolution in span, which would induce a two-

dimensionalisation effect. On the other hand, the medium grid still presents converged

spectra for time signals with ∆t∗ > 100. The fine grid leads to results very similar to

the medium grid. Hence, it is shown that using the medium grid with simulation times

over ∆t∗ > 100 provides statistically stationary results both in the close and far wake

regions (∆t∗ = 500 is used in the results presented in Chapter 3).

To validate the wake turbulence statistics, the Reynolds shear stress u′v′ has also been

qualitatively analysed. It can be observed in Fig. B.2 that the shear stress predicted

by the present solver is in very good agreement with the DNS data from Dong and

Karniadakis (2005), with just a slight shift of the field structures on the streamwise

direction. All positive and negative regions are correctly captured which display an

antisymmetric pattern with respect to the centreline of the wake.





Appendix C

Additional SANS derivations

C.1 The spanwise-averaged vorticity transport equation

The non-dimensional vorticity transport equation (VTE) can be written in its conser-

vation form as

∂tω +∇ · (u⊗ ω) = ∇ · (ω ⊗ u) +Re−1∇2ω. (C.1)

Decomposing and averaging similarly to § 4.2.1, the following spanwise-averaged VTE

can be obtained for the ez component of Eq. C.1,

∂tΩz + U∂xΩz + V ∂yΩz = Re−1
(
∂xxΩz + ∂yyΩz

)
−

−∂x
(
〈u ′ωz ′〉 − 〈ωx ′w ′〉

)
− ∂y

(
〈v ′ωz ′〉 −

〈
ωy
′w ′
〉)

+

+Ωx∂xW + Ωy∂yW + Ωz 〈∂zw ′〉 −W 〈∂zωz ′〉+Re−1 〈∂zzωz ′〉 , (C.2)

where the spanwise-averaged divergence of the velocity and vorticity vector fields, re-

spectively

∂xU + ∂yV = −〈∂zw ′〉 , (C.3)

∂xΩx + ∂yΩy = −〈∂zωz ′〉 , (C.4)

has been introduced to obtain the non-conservation form.

When spanwise periodicity is assumed, the third line in Eq. C.2 vanishes by its last three

terms cancelling by definition (Eq. 4.33), and the first two terms cancelling each other
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as follows,

Ωx∂xW + Ωy∂yW =
〈
∂yw − ∂zv

〉
∂xW + 〈∂zu− ∂zw〉 ∂yW =

=
〈
∂y(W + w ′)− ∂z(V + v ′)

〉
∂xW +

〈
∂z(U + u ′)− ∂z(W + v ′)

〉
∂yW =

=

(
∂yW −����:0〈∂zv ′〉

)
∂xW +

(
���

�:0〈∂zu ′〉 − ∂xW
)
∂yW = 0. (C.5)

The spanwise-averaged VTE is then simplified to

∂tΩz +U · ∇Ωz = Re−1∇2Ωz −∇ · ζR, (C.6)

where U = (U, V ) and ζR =
(
〈u ′ωz ′〉 − 〈ωx ′w ′〉 , 〈v ′ωz ′〉 −

〈
ωy
′w ′
〉)

.

C.1.1 Cylindrical coordinates

In a cylindrical coordinates system, using (er, eθ, ez) and

∇ =

(
1

r

∂ (r·)
∂r

,
1

r

∂ (·)
∂θ

,
∂ (·)
∂z

)
, (C.7)

the ez component of the non-dimensional VTE (Eq. C.1) can be written as
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∂ (rurωz)

∂r
+

1

r

∂ (uθωz)

∂θ
+
�
��

��∂ (urωz)

∂z
=

=
1

r

∂ (rωruz)

∂r
+

1

r

∂ (ωθuz)

∂θ
+
��

��
�∂ (ωzur)

∂z
+

1

Re

(
∂2ωz
∂r2

+
1

r

∂ωz
∂r

+
1

r2

∂2ωz
∂θ2

+
∂2ωz
∂z2

)
.

(C.8)

A decomposition and average similarly to § 4.2.1 yields

∂Ωz

∂t
+

1

r

∂
(
rUrΩz + 〈rur ′ωz ′〉

)
∂r

+
1

r

∂
(
UθΩz + 〈uθ ′ωz ′〉

)
∂θ

=

=
1

r

∂
(
rΩrUz + 〈rωr ′uz ′〉

)
∂r

+
1

r

∂
(
ΩθUz + 〈ωθ ′uz ′〉

)
∂θ

+

+
1

Re

∂2Ωz

∂r2
+

1

r

∂Ωz

∂r
+

1

r2

∂2Ωz

∂θ2
+

〈
∂2ωz

′

∂z2

〉 . (C.9)

The spanwise-averaged divergence of the velocity and vorticity fields can be respectively

written in cylindrical coordinates as

1

r

∂ (rUr)

∂r
+

1

r

∂Uθ
∂θ

= −
〈
∂uz

′

∂z

〉
, (C.10)

1

r

∂ (rΩr)

∂r
+

1

r

∂Ωθ

∂θ
= −

〈
∂ωz

′

∂z

〉
, (C.11)
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and introducing Eq. C.10 and Eq. C.11 into Eq. C.9 yields

∂Ωz

∂t
+ Ur

∂Ωz

∂r
+
Uθ
r

∂Ωz

∂θ
= Ωr

∂Uz
∂r

+
Ωθ

r

∂Uz
∂θ

+
1

Re

(
∂2Ωz

∂r2
+

1

r

∂Ωz

∂r
+

1

r2

∂2Ωz

∂θ2

)
−

−1

r

[
∂

∂r

(
〈rur ′ωz ′〉 − 〈rωr ′uz ′〉

)
+

∂

∂θ

(
〈uθ ′ωz ′〉 − 〈ωθ ′uz ′〉

)]
+

+Ωz

〈
∂uz

′

∂z

〉
− Uz

〈
∂ωz

′

∂z

〉
+

1

Re

〈
∂2ωz

′

∂z2

〉
. (C.12)

C.1.2 Relationship between SANS and spanwise-averaged VTE for-

mulations

Next, we show how the spanwise stresses in the SANS and the spanwise-averaged VTE

frameworks are related. First, we derive an expression for the vorticity-velocity terms of

the spanwise-averaged VTE to write them as velocity-velocity terms. Considering the

following vector identity

1

2
∇ (a · a) = (a · ∇)a+ a× (∇× a), (C.13)

we can rewrite the vector identity in terms of fluctuating quantities

1

2
∇ (u ′ · u ′) = (u ′ · ∇)u ′+ u ′× ω ′, (C.14)

where the definition of the vorticity vector field, ω = ∇× u, has been introduced.

Second, the conservation form of the convective forces can be expressed as

∇ · (u⊗ u) = (u · ∇)u+ u (∇ · u) , (C.15)

and it can be rewritten for the fluctuating quantities as

∇ · (u ′⊗ u ′) = (u ′ · ∇)u ′+ u ′ (∇ · u ′) , (C.16)

(u ′ · ∇)u ′ = ∇ · (u ′⊗ u ′)− u ′ (∇ · u ′) . (C.17)

Third, decomposing the continuity equation for incompressible flows (Eq. 4.11)

∂xU + ∂xu
′+ ∂yV + ∂yv

′+ ∂zw
′ = 0, (C.18)

and subtracting the averaged continuity equation (Eq. 4.12) yields

∂xu
′+ ∂yv

′+ ∂zw
′− 〈∂zw ′〉 = 0, (C.19)
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hence

∇ · u ′ = 〈∂zw ′〉 . (C.20)

We now introduce Eq. C.20 into Eq. C.17 obtaining

(u ′ · ∇)u ′ = ∇ · (u ′⊗ u ′)− u ′ 〈∂zw ′〉 , (C.21)

and Eq. C.21 is finally introduced into Eq. C.14

1

2
∇ (u ′ · u ′) = ∇ · (u ′⊗ u ′)− u ′ 〈∂zw ′〉+ u ′× ω ′, (C.22)

which yields

ω ′× u ′ = ∇ · (u ′⊗ u ′)− 1

2
∇ (u ′ · u ′)− u ′ 〈∂zw ′〉 . (C.23)

With this, a relation between the vorticity-velocity spanwise stresses and the velocity-

velocity spanwise stresses is defined in the conservation form. To derive a more explicit

form of the spanwise-averaged stresses, let us average Eq. C.23 and retrieve its ex and

ey components

ex :
〈
ωy
′w ′
〉
− 〈ωz ′v ′〉 = ∂x 〈u ′u ′〉+ ∂y 〈v ′u ′〉+

〈
∂z (w ′u ′)

〉
−

−∂x
(
〈u ′u ′〉+ 〈v ′v ′〉+ 〈w ′w ′〉

)
/2, (C.24)

ey : 〈ωz ′u ′〉 − 〈ωx ′w ′〉 = ∂x 〈u ′v ′〉+ ∂y 〈v ′v ′〉+
〈
∂z (w ′v ′)

〉
−

−∂y
(
〈u ′u ′〉+ 〈v ′v ′〉+ 〈w ′w ′〉

)
/2. (C.25)

Note that the last term of Eq. C.23 vanishes because of Eq. 4.6.

The spanwise stresses of the spanwise-averaged VTE (Eq. C.2) can be expanded using

Eqs. C.24 and C.25 as follows

−∂x
(
〈u ′ωz ′〉 − 〈ωx ′w ′〉

)
− ∂y

(
〈v ′ωz ′〉 −

〈
ωy
′w ′
〉)

=

= −∂x
(
∂x 〈u ′v ′〉+ ∂y 〈v ′v ′〉+

〈
∂z (w ′v ′)

〉
− ∂y

(
〈u ′u ′〉+ 〈v ′v ′〉+ 〈w ′w ′〉

)
/2
)

+

+∂y

(
∂x 〈u ′u ′〉+ ∂y 〈v ′u ′〉+

〈
∂z (w ′u ′)

〉
− ∂x

(
〈u ′u ′〉+ 〈v ′v ′〉+ 〈w ′w ′〉

)
/2
)

=

= −∂xx 〈u ′v ′〉 − ∂xy 〈v ′v ′〉 − ∂x
〈
∂z (w ′v ′)

〉
+ ∂xy

(
〈u ′u ′〉+ 〈v ′v ′〉+ 〈w ′w ′〉

)
/2+

+∂xy 〈u ′u ′〉+ ∂yy 〈v ′u ′〉+ ∂y
〈
∂z (w ′u ′)

〉
− ∂xy

(
〈u ′u ′〉+ 〈v ′v ′〉+ 〈w ′w ′〉

)
/2 =

=
(
∂yy − ∂xx

)
〈u ′v ′〉+ ∂xy

(
〈u ′u ′〉 − 〈v ′v ′〉

)
+ ∂y

〈
∂z (w ′u ′)

〉
− ∂x

〈
∂z (w ′v ′)

〉
. (C.26)
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On the other hand, the SANS equations (Eqs. 4.13 to 4.15) have yield the following

spanwise stresses

−
〈
∇ · (u ′⊗ u ′)

〉
= −

 ∂x 〈u ′u ′〉+ ∂y 〈u ′v ′〉+
〈
∂z (w ′u ′)

〉
∂x 〈v ′u ′〉+ ∂y 〈v ′v ′〉+

〈
∂z (w ′v ′)

〉
∂x 〈w ′u ′〉+ ∂y 〈w ′v ′〉+

〈
∂z (w ′w ′)

〉
 . (C.27)

Taking the curl of the momentum spanwise stresses

−∇×
〈
∇ · (u ′⊗ u ′)

〉
= −

ex ∂x ∂x 〈u ′u ′〉+ ∂y 〈u ′v ′〉+
〈
∂z (w ′u ′)

〉
ey ∂y ∂x 〈v ′u ′〉+ ∂y 〈v ′v ′〉+

〈
∂z (w ′v ′)

〉
ez ∂z ∂x 〈w ′u ′〉+ ∂y 〈w ′v ′〉+

〈
∂z (w ′w ′)

〉
 , (C.28)

recovers the VTE spanwise stresses as demonstrated for the ez component

−∇×
〈
∇ · (u ′⊗ u ′)

〉
ez =

= −∂x
(
∂x 〈v ′u ′〉+ ∂y 〈v ′v ′〉+

〈
∂z (w ′v ′)

〉)
+ ∂y

(
∂x 〈u ′u ′〉+ ∂y 〈u ′v ′〉+

〈
∂z (w ′u ′)

〉)
=

= −∂xx 〈v ′u ′〉 − ∂xy 〈v ′v ′〉 − ∂x
〈
∂z (w ′v ′)

〉
+ ∂xy 〈u ′u ′〉+ ∂yy 〈u ′v ′〉+ ∂y

〈
∂z (w ′u ′)

〉
=

=
(
∂yy − ∂xx

)
〈u ′v ′〉+ ∂xy

(
〈u ′u ′〉 − 〈v ′v ′〉

)
+ ∂y

〈
∂z (w ′u ′)

〉
− ∂x

〈
∂z (w ′v ′)

〉
, (C.29)

showing that the spanwise stresses in both formulations (Eqs. C.26 and C.29) are

equivalent.

C.2 Analytical validation and quadrature error analysis

The aim of this exercise is to analytically demonstrate the correct derivation of the SANS

equations. The velocity vector field needs to be solenoidal and periodic, in agreement

with the assumption used for the derivation of the simplified SANS equations (Eq. 4.37).

For this, the Taylor–Green vortex case is considered in a 2π-periodic box. The pressure

field is taken constant. The components of its periodic solenoidal initial velocity vector

field might be written as

u = cos(x) sin(y) sin(z), (C.30)

v = sin(x) cos(y) sin(z), (C.31)

w = −2 sin(x) sin(y) cos(z), (C.32)

which is indeed a solenoidal vector field

∇ · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
=

= − sin(x) sin(y) sin(z)− sin(x) sin(y) sin(z) + 2 sin(x) sin(y) sin(z) = 0. (C.33)
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C.2.1 No quadrature errors and spanwise periodicity

The averaging operation in the spanwise direction 〈·〉 is defined on the z ∈ [a, b] interval

as

〈q〉 (x, y, t) =
1

b− a

∫ b

a
q (x, y, z, t) dz. (C.34)

Numerically, this carries a quadrature error which we will neglect for the moment. The

following condition needs to hold true assuming an error-free quadrature and spanwise

periodicity, 〈
S (u, p)

〉
= S̃ (U , P ) +∇ · τRij , (C.35)

where

S = u · ∇u+∇p− ν∇2u, u = (u, v, w) , x = (x, y, z) , (C.36)

S̃ = U · ∇U +∇P − ν∇2U , U = (U, V ) , x = (x, y) . (C.37)

The derivation to validate the SANS equations will be performed for the ex component

of Eq. C.35. In a L = b−a = 2π domain and considering the velocity vector field defined

in Eq. C.30 to Eq. C.32, we obtain U = (0, 0, 0), so u = u ′.

We begin calculating the LHS of Eq. C.35,

〈S〉 ex =

〈
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂p

∂x
− ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)〉
. (C.38)

The required derivatives are

∂u

∂x
= − sin(x) sin(y) sin(z),

∂2u

∂x2
= − cos(x) sin(y) sin(z) = −u, (C.39)

∂u

∂y
= cos(x) cos(y) sin(z),

∂2u

∂y2
= − cos(x) sin(y) sin(z) = −u, (C.40)

∂u

∂z
= cos(x) sin(y) cos(z),

∂2u

∂z2
= − cos(x) sin(y) sin(z) = −u. (C.41)

Substituting the derivatives into Eq. C.38 yields

〈S〉 ex =

〈
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂p

∂x
− ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)〉
=

=
〈
− sin(x) cos(x) sin2(y) sin2(z) + sin(x) cos(x) cos2(y) sin2(z)−

−2 sin(x) cos(x) sin2(y) cos2(z) + 3νu
〉

=

= − π

2π
sin(x) cos(x) sin2(y) +

π

2π
sin(x) cos(x) cos2(y)− 2π

2π
sin(x) cos(x) sin2(y) + 0 =

=
1

2
sin(x) cos(x)

(
cos2(y)− 3 sin2(y)

)
. (C.42)
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Next, we calculate the RHS of Eq. C.35. Note that S̃ = 0 because U = 0 and the

pressure is constant. Hence, only the spanwise stresses remain, analytically(
∇ · τRij

)
ex =

∂

∂x
〈u ′u ′〉+

∂

∂y
〈u ′v ′〉 =

∂

∂x
〈uu〉+

∂

∂y
〈uv〉 =

=
∂

∂x

(〈
cos2(x) sin2(y) sin2(z)

〉)
+

∂

∂y

(〈
sin(x) cos(x) sin(y) cos(y) sin2(z)

〉)
=

=
∂

∂x

(
π

2π
cos2(x) sin2(y)

)
+

∂

∂y

(
π

2π
sin(x) cos(x) sin(y) cos(y)

)
=

= − sin(x) cos(x) sin2(y) +
1

2
sin(x) cos(x)

(
cos2(x)− sin2(x)

)
=

=
1

2
sin(x) cos(x)

(
cos2(y)− 3 sin2(y)

)
. (C.43)

Finally, we can show that Eq. C.35 has the correct balance between both sides by

bringing all the pieces together, i.e. using Eq. C.42 as LHS and Eq. C.43 as RHS,

1

2
sin(x) cos(x)

(
cos2(y)− 3 sin2(y)

)
= 0+

1

2
sin(x) cos(x)

(
cos2(y)− 3 sin2(y)

)
. (C.44)

C.2.2 Quadrature errors without spanwise periodicity

When quadrature errors arising from the averaging operation are considered, we have

to recall the second-line terms in Eq. 4.16 that were neglected in the previous section.

The quadrature error depends on the function being averaged and the quadrature itself.

From here, we will consider the composite trapezoidal quadrature which has the following

associated error on the integral interval [a, b]

εT (ξ) = −(b− a)h2

12
f ′′(ξ), ξ ∈ [a, b], (C.45)

where h is the subinterval (spacing) length defined as h = (b − a)/N , and N is the

number of subintervals for N + 1 quadrature points. Note that the convergence error

is O
(
h2
)

and the presence of f ′′, which implies that the trapezoidal rule can perfectly

calculate the quadrature of zero and first degree polynomial functions.

For the Taylor–Green vortex case, only first- and second-degree trigonometric functions

are required. We can quantify the error associated to its quadrature using the definition

above in the 2π interval as

I1 =

∫ 2π

0
sin(z)dz, (C.46)

ε1 (ξ) := I1 − I1,N =
πh2

6
sin(ξ), (C.47)
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and

I2 =

∫ 2π

0
sin2(z)dz, (C.48)

ε2 (ξ) := I2 − I2,N = −πh
2

6

[
2
(

cos2(ξ)− sin2(ξ)
)]
. (C.49)

Next, we bound ε1 and ε2 with |f ′′(ξ)|max within [0, 2π],

|ε1|max =
πh2

6
· 1, (C.50)

|ε2|max =
πh2

6
· 2, (C.51)

hence

|ε2|max = 2|ε1|max. (C.52)

Defining I∗1 and I∗2 as I∗ = I/(2π), we obtain

I∗1 =
0 + ε

2π
=

ε

2π
, (C.53)

I∗2 =
π + 2ε

2π
=

1

2
+
ε

π
, (C.54)

where ε = πh2/6. Note that I∗1 and I∗2 using cos(z) instead of sin(z) are similarly

calculated.

Considering quadrature errors, Eq. C.35 has to be corrected with the terms previously

neglected because of spanwise periodicity,

〈
S (u, p)

〉
= S̃ (U , P ) +∇ · τRij +W 〈∂zu ′〉 − ν 〈∂zzu ′〉+

〈
∂z (w ′u ′)

〉
. (C.55)

We proceed by calculating again the new average and fluctuating quantities using the

errors described above as follows

U =
ε

2π
cos(x) sin(y), u ′ = cos(x) sin(y)

(
sin(z)− ε

2π

)
, (C.56)

V =
ε

2π
sin(x) cos(y), v ′ = sin(x) cos(y)

(
sin(z)− ε

2π

)
, (C.57)

W = − ε
π

sin(x) sin(y), w ′ = 2 sin(x) sin(y)

(
ε

2π
− cos(z)

)
. (C.58)
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With this, the LHS of Eq. C.55 can be written as

〈S〉 ex =

〈
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂p

∂x
− ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)〉
=

=
〈
− sin(x) cos(x) sin2(y) sin2(z) + sin(x) cos(x) cos2(y) sin2(z)−

−2 sin(x) cos(x) sin2(y) cos2(z) + 3νu
〉

=

= −
(

1

2
+
ε

π

)
sin(x) cos(x) sin2(y) +

(
1

2
+
ε

π

)
sin(x) cos(x) cos2(y)

−2

(
1

2
+
ε

π

)
sin(x) cos(x) sin2(y) + 3ν

ε

2π
cos(x) sin(y) =

=

(
1

2
+
ε

π

)
sin(x) cos(x)

(
cos2(y)− 3 sin2(y)

)
+ 3ν

ε

2π
cos(x) sin(y). (C.59)

The spatial operator of the spanwise-averaged quantities (S̃) considering quadrature

errors can be written as

S̃ ex = U
∂U

∂x
+ V

∂U

∂y
+
∂P

∂x
− ν

(
∂2U

∂x2
+
∂2U

∂y2

)
=

=
ε

2π
cos(x) sin(y)

∂

∂x

(
ε

2π
cos(x) sin(y)

)
+

ε

2π
sin(x) cos(y)

∂

∂y

(
ε

2π
cos(x) sin(y)

)
+ 0−

−ν
[
∂2

∂x2

(
ε

2π
cos(x) sin(y)

)
+

∂2

∂y2

(
ε

2π
cos(x) sin(y)

)]
=

= −
(
ε

2π

)2

sin(x) cos(x) sin2(x) +

(
ε

2π

)2

sin(x) cos(x) cos2(y) + 2ν
ε

2π
cos(x) sin(y) =

=

(
ε

2π

)2

sin(x) cos(x)
(

cos2(y)− sin2(x)
)

+ ν
ε

π
cos(x) sin(y). (C.60)
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And
(
∇ · τRij

)
ex is calculated as follows

(
∇ · τRij

)
ex =

∂

∂x
〈u ′u ′〉+

∂

∂y
〈u ′v ′〉 =

=
∂

∂x

〈cos2(x) sin2(y)

(
sin(z)− ε

2π

)2
〉+

+
∂

∂y

〈sin(x) cos(x) sin(y) cos(y)

(
sin(z)− ε

2π

)2
〉 =

=
∂

∂x

cos2(x) sin2(y)

〈(
sin2(z) +

(
ε

2π

)2

− ε

π
sin(z)

)〉+

+
∂

∂y

sin(x) cos(x) sin(y) cos(y)

〈(
sin2(z) +

(
ε

2π

)2

− ε

π
sin(z)

)〉 =

=

[
1

2
+
ε

π
+

(
ε

2π

)2

− 1

2

(
ε

π

)2
][

∂

∂x

(
cos2(x) sin2(y)

)
+

+
∂

∂y

(
sin(x) cos(x) sin(y) cos(y)

) ]
=

=

[
1

2
+
ε

π
− 1

4

(
ε

π

)2
]

sin(x) cos(x)
(

cos2(y)− 3 sin2(y)
)
. (C.61)

Next, we calculate the terms neglected in the previous section

W 〈∂zu ′〉 − ν 〈∂zzu ′〉+
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We note that
〈
∂z (w ′u ′)

〉
automatically cancels out.

Putting all the pieces together (Eqs. C.59, C.60, C.61 & C.62 into Eq. C.55) we obtain

the error between the balance of its LHS and RHS as follows
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With this, we can conclude that the quadratic errors arising from the RHS of Eq. C.55

cancel out with each other. Also, the linear errors arising on both LHS and RHS also

cancel each other.
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C.2.3 Quadrature error with spanwise periodicity

The SANS derivation employed in Chapter 4 and Chapter 5 (Eq. C.35) neglects errors

arising from the quadratures of spanwise derivatives (second line of Eq. 4.16). Because

of this, Eq. C.55 is not balanced. Here, we derive the error associated to this practice.

Inserting the previously derived terms into Eq. C.35 carries the following error

E =
〈
S (u, p)

〉
− S̃ (U , P )−∇ · τRij =

=

(((
((((

(((
((((

(((
((((

((
1

2
+
ε

π

)
sin(x) cos(x)

(
cos2(y)− 3 sin2(y)

)
+ 3ν

ε

2π
cos(x) sin(y)−

−
(
ε

2π

)2

sin(x) cos(x)
(

cos2(y)− sin2(x)
)
− ν ε

π
cos(x) sin(y)−

−
[
�
�
��1

2
+
ε

π
− 1

4

(
ε

π

)2
]

sin(x) cos(x)
(

cos2(y)− 3 sin2(y)
)

=

=
ε

π
ν cos(x) sin(y)− 1

4

(
ε

π

)2

sin(x) cos(x)
(

cos2(y)− sin2(x)
)

+

+
1

4

(
ε

π

)2

sin(x) cos(x)
(

cos2(y)− 3 sin2(y)
)

=

=
ε

π
ν cos(x) sin(y)− 1

2

(
ε

π

)2

sin(x) cos(x) sin2(y), (C.64)

which corresponds indeed to the derivation of Eq. C.62

E = | 〈w〉 〈∂zu ′〉 − ν 〈∂zzu ′〉 |. (C.65)

It can be observed that, given ε is a small positive number, the viscous term has a larger

contribution to the model error.

It is important to note that the midpoint and trapezoidal quadratures obtain a higher

convergence rate when the integrand is periodic and smooth (Weideman, 2002; Tre-

fethen and Weideman, 2014), precisely from O(h2) to O(e−1/h). Applying the spanwise-

periodicity constraint in our problem and considering incompressible flow (smooth func-

tions), the quadrature error should converge faster than the spatial discretisation error

of the governing equations
(
O(h2)

)
.



Appendix D

Machine-learning model

hyper-parameters tuning

A hyper-parametric study of the proposed ML model for the SANS equations is per-

formed next. Different MIMO-CNN architectures are considered, as shown in Fig. D.1.

All of the different CNNs are based on encoding the input information into some lower-

dimensional latent space followed by a decoding procedure that maps such latent space

into the target outputs, similarly to SegNet (Badrinarayanan et al., 2015) or U-net

(Ronneberger et al., 2015) architectures.

For the hyper-parametric study, a dataset of 10152 snapshots containing the resolved

quantities {U, V, P} and the residual closure terms {SRx ,SRy } is generated throughout

approximately 600 wake cycles. The size of the recorded 2-D flow fields is 1216 × 540.

The data is split 80-20 for training and testing, respectively. The training data is further

split 75-25 for optimisation and validation, respectively. The test dataset is generated

after the 600 wake cycles, hence this data is completely hidden from the CNN during the

training stage. Only the inner uniform domain (see Fig. 3.2) is stored during the data

generation process. For the training stage, an early-stopping approach is considered

as the convergence criteria when the validation loss does not improve for 8 consecutive

epochs (dataset iterations), or a maximum of 200 epochs is reached. Success is measured

by the Pearson correlation coefficient between the target (SR) and predicted (SR,ML)

output fields, respectively

CCx = CC
(
SRx ,SR,ML

x

)
=

cov
(
SRx ,SR,ML

x

)
√

cov
(
SRx ,SRx

)
cov

(
SR,ML
x ,SR,ML

x

) , (D.1)

CCy = CC
(
SRy ,SR,ML

y

)
=

cov
(
SRy ,SR,ML

y

)
√

cov
(
SRy ,SRy

)
cov

(
SR,ML
y ,SR,ML

y

) . (D.2)
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Architecture M1, M2, M3
Loss function sse, sae
Activation function ReLU, tanh, sigmoid
Max. filters 16, 32, 64
Kernel size 3× 3, 5× 5, 7× 7
Normalised input data False, True
Input set {U, V, P}, {Ωz, d}, {∇U ,∇P}

Table D.1: Parametric study. sse: sum square error. sae: sum absolute error. ReLU:
rectified linear unit. Ωz: Spanwise-averaged vorticity. d: Distance function to the
cylinder.

Architecture M3
Loss function sse
Activation function ReLU
Max. filters 64
Kernel size 3× 3
Normalised input data True
Input set {U, V, P}

Table D.2: Base-case parameters of the parametric investigation.

A mini-batch gradient descend method (4 to 6 samples depending on the GPU memory)

using the Adam optimiser (Kingma and Ba, 2014) is employed. The learning rate is set

to 10−4 with a decay rate of 10−5. The full model is developed under Keras (Chollet

et al., 2015), a deep-learning Python library using the TensorFlow (Abadi et al., 2015)

backend.

Because of the network weights are initialised randomly and stochastic gradient descent

backpropagation is used to optimise the network, there is an irreducible level of ran-

domness in the final results. Hence, the training process is repeated for cases converged

into a very shallow local minima and only the best results have been reported.

A flow field snapshot of resolved quantities and a target output is displayed in Fig. D.2.

The complex flow structures at the shear layer roll-up region behind the cylinder can be

particularly challenging to model. This can indicate that a large CNN in terms of number

of trainable parameters (weights W and bias b) is required. Also, beyond exploring

different CNN architectures, we test different loss functions, activation functions, number

of filters and kernel size, effect of input data normalisation, and different input sets. A

summary of the parametric study is detailed in Tab. D.1 and the base-case parameters

are shown in Tab. D.2.
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(a) Model 1 (M1)

(b) Model 2 (M2)

(c) Model 3 (M3)

Figure D.1: CNN architectures investigated. The input (Xn) and output (Yn) fields size
is 1216×540. Arrows color indicate layers of: Dark blue: Conv2D + batch normalisation
+ activation function. Yellow: MaxPooling 2× 2. Magenta: UpSampling 2× 2. Green:
Conv2D 1 × 1 + batch normalisation + linear function. The thickness of each block
(noted on the last dimension) represents the number of filters. On the encoding blocks,
the number of filters is doubled at every convolutional layer, reaching a maximum
number of filters just before the decoding block, where the operation is reversed halving
the number of filters at every convolutional layer. The merging operator _ indicates
concatenation in the last dimension, hence stacking filters from multiple blocks.
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(a) P

(b) Ωz

(c) SRx

Figure D.2: Flow snapshot of resolved (top, middle) and target closure (bottom) fields.
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Case
Train.

params.
val.: CCx, CCy test: CCx, CCy Best epoch

M1 258242 0.75, 0.83 0.74, 0.83 200

M1

norm.
258242 0.84, 0.85 0.83, 0.84 70

M2 300194 0.85, 0.86 0.84, 0.84 81

M2

norm.
300194 0.86, 0.88 0.85, 0.88 62

M2

norm.

stacked

58538 0.76, 0.77 0.74, 0.76 63

M3 338498 0.87, 0.88 0.86, 0.87 105

M3

norm.
338498 0.86, 0.85 0.85, 0.84 70

Table D.3: Validation and test results for different model architectures.

D.1 Results

D.1.1 Model architecture and data normalisation

We start investigating the CNN architecture based on three different models, namely

M1, M2 and M3 (see Fig. D.1). The base-case parameters are detailed in Tab. D.2. We

also study the effect of normalising each input data sample with its standard score, i.e.

x̂ = (x− x̄) /σx.

Results for the training stage of each model are displayed in Fig. D.3. It can be ob-

served that normalising the input data provides a faster convergence, noting that the

non-normalised M1 case hits the maximum number of epochs limit. The correlation coef-

ficient results are given in Tab. D.3. All models provide a high correlation coefficient for

both validation and test datasets (hence no over-fitting is detected). The general trend

is that accuracy increases with the network size. It is expected that output decoding

branches having access to a larger latent space (number of filters encoding information

on the encoder output), such as M3, are more flexible and perform better than networks

with a smaller latent space. The M3 model with normalised input data is selected for all

the subsequent analysis, unless specified otherwise. The choice is motivated by the M3

model training consistency and its slightly faster convergence when compared to other

models.
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Figure D.3: Training history of the different model architectures. Left: Input data not
normalised. Right: Input data normalised. Legend: Grey: fit loss. Black: val. loss.
Blue: CCx (val. dataset). Purple: CCy (val. dataset). Red: Early stop mark.
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Case
Train.

params.
val.: CCx, CCy test: CCx, CCy Best epoch

sse 338498 0.86, 0.85 0.85, 0.84 70

sae 338498 0.86, 0.57 0.83, 0.48 45

Table D.4: Validation and test results for different loss functions.

Additionally, a simple auto-encoder concatenating the resolved quantities in a single

input branch (stacking them in the filter dimension, noted in Tab. D.3 as “stacked”) has

been tested. Even though this model is much smaller than the other ones in terms of

number of trainable parameters, it still manages to provide acceptable predictions.

D.1.2 Loss function

The loss function between predicted and target fields is investigated next. The same

previous base-case parameters are chosen and results are summarised in Tab. D.4.

It can be observed that using the absolute error yields to a local minima where one of

the outputs has not converged successfully. The squared error function being an easier

metric to differentiate (convex parabola) than the absolute error might be causing such

difference.

D.1.3 Activation function

Activation functions (h) are used to dictate the output of a neuron based on some input

value x (the model input or a previous layer output), a weight and a bias: a = h(wx+b).

Activation functions widely used in ANNs are tested here. We consider the ReLU, tanh,

and sigmoid activation functions. Results are displayed in Tab. D.5.

It can be observed that the ReLU activation function provides a clear advantage in com-

parison with the other tested functions. The ReLU function allows for faster trainings

of deep ANNs because it preserves the neuron relative intensity across layers (maximum

value is not capped) (Nair and Hinton, 2010). This is also due to the fact that the ReLU

function helps mitigating vanishing-gradient caveats which arise more naturally when

using the sigmoid function.

D.1.4 Number of filters and kernel size

The number of filters per convolutional layer and the convolution kernel size is explored.

The results for the maximum number of filters per convolutional layer are displayed
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Case
Train.

params.
val.: CCx, CCy test: CCx, CCy Best epoch

ReLU 338498 0.86, 0.85 0.85, 0.84 70

tanh 338498 0.78, 0.76 0.77, 0.76 62

sigmoid 338498 0.81, 0.82 0.80, 0.82 36

Table D.5: Validation and test results for different activation functions.

Case
Train.

params.
val.: CCx, CCy test: CCx, CCy Best epoch

64 338498 0.86, 0.85 0.85, 0.84 70

32 85154 0.81, 0.72 0.81, 0.71 34

16 21554 0.87, 0.87 0.87, 0.86 386

Table D.6: Validation and test results for different maximum number of filters.

in Tab. D.6, where the number of trainable parameters jumps by a factor of 4. The

results observed in this particular study are strongly biased by the number of training

epochs. It should be noted that the case using a maximum of 16 filters only converged

after almost 400 epochs (the maximum epochs limit has been lifted here because of the

network size), whereas the other cases are both converged under 100 epochs. The slow

convergence of the 16 filters might be due to its lack of flexibility (model degrees of

freedom) compared to the models with more filters available. Still, the 64 filters case

displays correlation coefficients relatively close to the 16 filters case with only 70 epochs

of training. Hence it can be argued that increasing the number of filters allows the

model to be optimised based on a wider range of spatial features thus achieving a faster

convergence. Simultaneously, increasing the number of filters does not automatically

yield better accuracy.

From a computational cost standpoint, the training time for the 64 maximum filters case

is approximately 26 min./epoch, whereas the 32 and 16 filters cases are both around 23

min./epoch (the latter only measured during its first 100 epochs). Hence, the compu-

tational cost does not increase linearly with the network size. On the other hand, the

computational training time of the 16 filters case gradually increases with every new

epoch. For the 378 epochs until convergence, a total of 180 hours of computational time

is required, averaging to roughly 28 min./epoch. Therefore, the computational time per

epoch increases with the number of epochs, making the 16 maximum filters case less

efficient compared to the larger networks.

The results for the kernel size effect are displayed in Tab. D.7. The kernel size is

important for the detection of small- and large-scale structures. The kernel size to
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Case
Train.

params.
val.: CCx, CCy test: CCx, CCy Best epoch

3× 3 338498 0.85, 0.86 0.86, 0.84 70

5× 5 937282 0.89, 0.89 0.89, 0.89 101

7× 7 1835458 0.87, 0.86 0.86, 0.86 34

Table D.7: Validation and test results for different kernel sizes.

capture the smallest scale in the wake should be, at least, a 3 × 3 filter since our iLES

solver is resolving spatial scales down to grid level. Structures larger than the grid-

level scale might be better identified by slightly larger kernels. However, the nonlinear

combination of feature maps across the CNN layers allows small kernels to reconstruct

such large-scale structures, hence the implied advantage of slightly larger kernels is not

as relevant. On the other hand, large kernels will filter out information of the subkernel-

scale structures. This is why the current accepted practice in CNNs is to use either 3×3

or 5× 5 kernels and our results agree with that practice. The 5× 5 kernel configuration

provides the best prediction among the kernels set, where a compromise between the

detection of small- and large-scale structures is achieved.

D.1.5 Input data

Last, different input sets are evaluated. Here, we consider the M2 model without nor-

malising the inputs. This is motivated by the fact that the M3 model becomes very

large when 6 different inputs are used, as it is the case with the {∇U ,∇P} input set.

The remaining base-case parameters are employed. By testing different inputs we seek

to include features more closely related to the expected outputs so that the regression

problem solved by the CNN becomes easier (Gamahara and Hattori, 2017; Beck et al.,

2019).

As summarised in Tab. D.8, it is found that the primitive quantities set and the gradient

set provide the highest correlation between target and predicted closure terms. On

the other hand, the vorticity plus the distance function input set does not perform as

well. The closure terms are, in their core, convective terms of the spanwise-fluctuating

velocity field. Hence, it is reasonable to argue that spatial derivatives of the resolved

spanwise-averaged velocity field carry more relevant information to the closure terms

than the other input sets. Still, the primitive quantities set performs very similarly to

the gradient set. This can be an indicator of the network being able to find the gradients

on its own. Also, compared to the vorticity input set, it seems that information on the

pressure field is important although this has not been tested in direct comparison.
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Case
Train.

params.
val.: CCx, CCy test: CCx, CCy Best epoch

{U, V, P} 338498 0.86, 0.85 0.85, 0.84 70

{Ωz, d} 255746 0.57, 0.52 0.56, 0.52 110

{∇U ,∇P} 433538 0.86, 0.87 0.85, 0.86 112

Table D.8: Validation and test results for different input sets.

D.2 Conclusion

The M2 model has provided the highest correlations across the tested models for a

given set of base-case parameters, and, on the other hand, the M3 model offered the

best consistency while training. Also, normalising the input data allows for faster train-

ing convergence without significantly compromising accuracy. The sse loss function, a

maximum of 64 filters, and a kernel size of 5× 5 proved to be the best possible parame-

ters. Finally, the gradient input set and the primitive quantities set performed similarly

providing the highest correlation coefficients (see Tab. D.9).

From a qualitative standpoint, predictions and target closure terms are displayed in

Fig. D.4. The M3 model using the normalised primitive quantities input set, a kernel

size of 5×5, the sse loss function, and 64 maximum filters has been employed to generate

the predicted closure terms (highest CC observed: CC(SRx ) = 0.89, CC(SRy ) = 0.89). The

predicted fields have been post-processed including a wake mask step constructed from

the resolved vorticity field and a Gaussian filter to mitigate the noise in the raw CNN

output (note that all the presented correlation values do not include this post-processing

step). This post-processing step is similar to process described in § 5.2 although in that

case it is embedded in the CNN.

Fig. D.4 shows that both large- and mid-scale structures are well captured by the model.

On the other hand, small-scale structures are not so well identified. Similar issues are

encountered in Lee and You (2019), where deep-learning models employed for recursively

generating snapshots of flow past a circular cylinder at high Re failed to fully reproduce

small-scale structures. Also, the noise observed in the SR,ML
y output motivates the

inclusion of a wake mask, as described in § 5.2.
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Architecture
M2 (highest correlation)

M3 (best training consistency)

Loss function sse

Activation function ReLU

Max. filters 64

Kernel size 5× 5

Normalise input data True

Input dataset {U, V, P}, {∇U ,∇P}

Table D.9: Summary of best results.

(a) SRx

(b) SR,ML
x (raw)

(c) SR,ML
x (post-processed)

(d) SRy

(e) SR,ML
y (raw)

(f) SR,ML
y (post-processed)

Figure D.4: Qualitative comparison between a snapshot of target fields (top), CNN
raw predictions (middle), and CNN post-processed predictions (bottom). The post-
processing step removes high-frequency oscillations with a Gaussian filter and applies
a wake detection filter constructed from the resolved vorticity field.





Appendix E

Hardware and software details

The 3-D simulations employed throughout the thesis have been performed in the Iridis4

supercomputer at the University of Southampton. The fluid solver is run in 128 parallel

processes across 8 different nodes. Each node is equipped with 16x 2.6 GHz Intel®

Sandybridge™ processors. With this set-up, 205 hours of computational time was spent

for the dataset generation used in Chapter 5. A NVIDIA® Tesla V100 GPU is used for

training the ML model in the Iridis5 supercomputer. It takes approximately 30 minutes

to iterate through the training dataset (i.e. 30 min./epoch).

In the a-posteriori analysis, the fluid solver (Fortran) and the ML model (Python) need

to run in sync. At every time step, the resolved quantities data is transferred to the

ML model in order to compute the closure terms. After the prediction is completed,

the closure terms are sent back to the fluid solver to compute the solution of the next

time step. This has been accomplished using network sockets, a data transfer protocol

between processes living in the same network. In particular, internet sockets have been

employed allowing to transfer data across a network port. An example of Fortran-Python

sockets data transfer can be found in Font (2019a). Since the SANS simulation is purely

2-D, this has been carried in a 4.0 GHz Intel® Core™ i7-6700K processor using serial

computations. It takes approximately 40 minutes to complete ∆t∗ = 10 time units in

this a-posteriori configuration.
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