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1 Introduction

Recent advances in modern computer architectures
for high-performance computing (HPC) are paving
the path towards a wider adoption of high-order (HO)
methods within the computational fluid dynamics
(CFD) community (Castonguay, 2012). Compared to
traditional low-order methods, HO methods promise
to achieve an arbitrary level of accuracy at a re-
duced computational cost (Witherden, 2015), mak-
ing high-fidelity scale-resolving simulations for high-
speed flows a reality. Moreover, HO extensions of
traditional methods are usually constructed through
larger stencils – an approach tied to be memory-
bounded in the new hardware architectures. In con-
trast, the element-local operations of HO methods
helps reducing such memory overhead (Trojak, 2019)
and is more aligned with the current HPC vision.

Under the high-order methods umbrella, the flux
reconstruction (FR) method originally proposed by
Huynh (2007) has been gaining attention due to its
simple formulation and unifying framework. Simi-
larly to other HO methods such as nodal discontinu-
ous Galerkin (DG), the FR method considers piece-
wise discontinuous polynomial basis functions (usu-
ally Lagrange polynomials) defined at a set of element
nodal points to spatially approximate the solution of
a conservation law in a tessellated computational do-
main. The FR method is also linked to the spectral
difference (SD) method in the sense that the differen-
tial form of the conservation law is used, differently
from nodal DG which uses the integral weak form ap-
proach. It has been shown that FR can recover both
nodal DG and SD schemes for linear and spatially-
varying fluxes (Vincent, 2011), and non-linear fluxes
(DeGrazia, 2014), hence the unifying character.

During the last decade, research on HO meth-
ods for CFD has been focused on achieving a simi-
lar level of maturity as traditional low-order meth-
ods. To do so, classical turbulence models, shock-
capturing schemes, and convection schemes, among
other key features, need to be revisited for the HO
approach. With this purpose, we investigate the
entropy-viscosity shock-capturing scheme by Guer-
mond (2011) for the FR method. The entropy-
viscosity method forces an entropy-based numerical
dissipation via effective viscosity near physical dis-
continuities while vanishing on smooth regions. This

helps stabilising the naturally arising oscillations that
spectral (HO) methods trigger near discontinuities
because of the Gibbs phenomenon. The main idea
of this method is to capture the shocks occurring in-
side the element, while the discontinuities between
elements are dealt by a Riemann solver. Because of
the close relation of FR to nodal DG, shock-capturing
schemes originally developed for DG can be trans-
lated to FR. In this context, Trojak (2021) combined
a HO FR scheme with a low-order summation-by-
parts scheme via convex limiting allowing to accu-
rately capture shocks for the 1D Euler equations. The
entropy-viscosity residual was used as shock sensor to
lower the computational cost of the method. Asthana
(2015) implemented a shock-capturing scheme based
on Fourier spectral filtering which allowed to accu-
rately capture shocks located inside an element even
for high polynomial degrees.

2 Methodology and results

A 1-D flux reconstruction solver has been imple-
mented using Julia (Bezanson, 2017): a compiled,
dynamic, and composable programming language
specifically designed for scientific computing. The
solver features the energy-stable schemes from Vin-
cent (2011), arbitrary polynomial degree for the
Lagrange basis functions, Gauss–Legendre (GL) or
Gauss–Lobatto–Legendre (GLL) collocation points,
a set of different Riemann solvers for the numerical
fluxes (Roe, Rusanov, HLL, HLLC), and low dissi-
pation, low dispersion 4th order 2N Runge–Kutta
temporal integration schemes (Stanescu, 1998). In
contrast to other works, the implementation of the
entropy-viscosity scheme is performed element-wise,
ie. a single elemental viscosity is used taken as the
maximum absolute norm of the values computed at
the element solution points. This has proven to be
more stable than the point-wise counterpart.

Encouraging preliminary results have been ob-
tained for the 1D Burgers equations. This set of equa-
tions forms a shock when two or more characteristic
lines intersect each other. Two initial conditions have
been explored, a sine and a square wave. The solu-
tion is obtained using polynomials from third to fifth
degree (p ∈ {3, 4, 5}) and two different quadratures
(GL and GLL) with and without entropy viscosity.
The numerical experiments show that the entropy



Figure 1: Comparison of the solution of the Burgers equation on a sine wave using p4 and 50 elements. Left: GLL
nodes and Roe solver without entropy viscosity. Right: GLL nodes and Roe solver with entropy viscosity (cE = 1.0).

Figure 2: Comparison of the solution of the Burgers equation on a square wave using p4 and 50 elements. In both
experiments the entropy viscosity is activated (cE = 1.0) and a Roe solver is used at the interface. Left: GL quadrature
nodes. Right: GLL quadrature nodes.

viscosity is needed to stabilize the shock when using
GLL quadrature nodes and a Roe solver, as shown in
fig. 1. For both quadratures points (GL results not
shown here), oscillations are reduced on the shock in-
terface without completely eliminating them, and the
shock is better captured with increasing polynomial
degree. For the square wave, even with a Roe solver
on the element interface, the method is not able to
capture the shock and the solution is very degraded
or non-existent. The addition of the entropy viscos-
ity allows to correctly capture the shock, as shown
in fig. 2, although some dissipation is present since
the shape of the wave is not completely recovered.
With this encouraging results, the next step is to test
this method in the well-known Sod shock problem
for the 1D Euler equations. Moreover, split formula-
tions of the governing equations will be explored as
a de-aliasing mechanism (Abe, 2018). This will allow
to further assess the validity of the entropy-viscosity
shock-capturing scheme for the FR method.
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